The seismic reflection method is the primary tool to provide detailed information on the near-surface. This paper proposes a common receiver correlation stack method. A towed seismograph is used to perform the rapid acquisition with small geophone spacing and a high sample rate, while broadband (from 1 Hz to 1000 Hz) seismic data are collected. Results of modelled and measured data indicate that the proposed stack method: (1) does not need normal move-out velocity; (2) does not lose shallow information; and (3) improves the stacking fold by twice as much as the conventional stack method. Compared with the conventional stack method, the proposed method can suppress surface waves better and improve the quality of the final sack section, especially for high-frequency data. Combined with the towed seismograph, the proposed stack method can perform the rapid collection and enhance the accuracy of stack imaging of near-surface seismic data.
The water-rich giant karst cave is the risk source of tunnel construction in the karst area. To reduce the risk of tunnel construction, it is necessary to accurately explore the spatial distribution range of the karst cave in the direction of advance and both sides of the tunnel. Reflection seismic and transient electromagnetic (TEM) are the primary geophysical tools for tunnel advanced prediction; they have strengths and weaknesses. The tunnel seismic can only describe the boundary interface between cave bodies and surrounding rock in the direction of advance. Although the TEM method can detect the spatial distribution range of cave bodies, the inversion results depend on the initial resistivity model. The single method is insufficient to describe the spatial distribution of cave bodies. To overcome the shortcoming of a single method, we developed tunnel seismic and TEM joint detection of karst cavern and established a complete data processing flow. The tunnel seismic migration profiles can describe the interface between the karst cave and surrounding rock in the direction of advance. We put forward a reasonable initial model: (1) the layer’s thicknesses are determined by the impedance interface from the tunnel migration data; (2) the initial resistivity values are determined from the pilot hole and prior geological data. Comparison of the inversion results of different initial models of tunnel face horizontal line data proves that the proposed initial model method can reduce multisolution, save calculation time, and improve inversion accuracy. The multidirectional TEM inversion profiles can describe the spatial distribution of the giant cave. Combined with the results of tunnel seismic and TEM, the interpretation errors can be reduced and the extension of the karst cave can be delineated. Later excavation results also verify the accuracy of the prediction results.
Fiberglass prepared from broken waste glass can be used in epoxy asphalt mixtures for performance enhancement and a toughening effect. There is no systematic study on the influence mechanism of the size and the amount of glass fiber on the properties of epoxy asphalt mixtures. The effects of fiberglass on the properties of epoxy asphalt concrete were evaluated using a tensile test, three-point bending test, four-point bending fatigue test and an SEM scanning test. The results verify that the tensile strength of epoxy asphalt mastic with a 6 mm length and 2% content increased the most. Compared with the nondoped glass fiber, it increased by 69.2%. Under the influence of the internal composition of the asphalt mixture, the optimal ratio scheme is different from that of epoxy asphalt mastic. A microscopic analysis showed that uniformly dispersed fiberglass in the epoxy asphalt mixture forms a spatial network structure, leading to reinforcement and the restraint of microcrack expansion. The addition of fiberglass with a length of 9 mm and at a concentration of 5% to the epoxy asphalt mixture resulted in the maximum road performance. The Marshall stability increased by 43.5%, and the flexural and tensile strength increased by 33.7%. The fiberglass length is the most important factor limiting the strength and toughening effects of epoxy asphalt mixtures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.