Protective immunity against mycobacteria is dependent on antigen-specific T cells. Current evidence suggests that not only helper T cells that activate infected macrophages but also cytotoxic T cells (CTL) that lyse infected macrophages are involved in protection. Mycobacterium-specific CD4+ CTL are readily detectable among primary peripheral T cells but what proportion of CD4+ T cells display cytotoxic activity is not known. Whether the cytotoxic CD4+ T cells are identical to or distinct from those that produce interferon (IFN)-gamma is also unknown. In addition, studies on CTL in mycobacterial infections have focused primarily on selected antigens like hsp65 but have not analyzed systematically whether other mycobacterial antigens can activate CTL as well. These issues are relevant not only to a further understanding of protective immunity and immunopathology but also may have implications for the design of effective vaccines. To start addressing these issues, we have studied a large panel of CD4+ T cell clones specific for a broad range of mycobacterial antigens, and analyzed their ability to lyse mycobacterium-pulsed target cells and to release IFN-gamma and interleukin (IL)-4. Our results show that the vast majority of CD4+ T cell clones are able to lyse mycobacterial antigen-pulsed target cells, and that those CTL can be triggered by a wide variety of mycobacterial antigens. CD4+ CTL released high levels of IFN-gamma, but low or nondetectable levels of IL-4. In contrast, control tetanus toxoid-specific T cell clones or lines displayed poor or weak cytotoxic activity and released high levels of IL-4. The antimycobacterial clones appeared to be heterogeneous in their levels of cytotoxic activity and IFN-gamma release. Interestingly one T cell clone was able to lyse only mycobacterium-pulsed macrophages but not B cells suggesting possible selectivity in target cell recognition for some CTL. These in vitro data have to be interpreted with some caution. Nevertheless they confirm and significantly extend previous observations and suggest that mycobacteria preferentially induce CD4+ T helper type 1 (Th1)-like cells that display cytotoxic activity, and release high levels of IFN-gamma but no or little IL-4. The induction of such Th1 like cells is specific for mycobacteria since tetanus toxoid induced T cells that were poorly or not cytolytic and secreted high levels of IL-4.
By screening a Mycobacterium leprae lambda gt11 genomic DNA library with leprosy-patient sera we have previously identified 50 recombinant clones that expressed novel M. leprae antigens (Sathish et al., 1990). In this study, we show by DNA sequencing and immunoblot analysis that three of these clones express a M. leprae homologue of the fibronectin-binding antigen 85 complex of mycobacteria. The complete gene was characterized and it encodes a 327-amino-acid polypeptide, consisting of a consensus signal sequence of 38 amino acids followed by a mature protein of 289 amino acids. This is the first sequence of a member of the M. leprae antigen 85 complex, and Southern blotting analysis indicated the presence of multiple genes of the 85 complex in the genome of M. leprae. The amino acid sequence displays 75-85% sequence identity with components of the antigen 85 complex from M. tuberculosis, M. bovis BCG and M. kansasii. Furthermore, antibodies to the antigen 85 complex of M. tuberculosis and M. bovis BCG reacted with two fusion proteins containing the amino acid regions 55-266 and 266-327 of the M. leprae protein. The M. leprae 30/31 kDa protein induces strong humoral and cellular responses, as judged by Western blot analysis with patient sera and proliferation of T cells derived from healthy individuals and leprosy patients. Amino acid regions 55-266 and 265-327 both were shown to bind to fibronectin, indicating the presence of at least two fibronectin-binding sites on the M. leprae protein. These data indicate that this 30/31 kDa protein is not only important in the immune response against M. leprae, but may also have a biological role in the interaction of this bacillus with the human host.
The The clinical spectrum of leprosy reflects the striking differences between individuals in developing cell-mediated immunity to the causative agent, Mycobacterium leprae (7,8). At the "high resistant" pole of this spectrum, tuberculoid leprosy (TT) patients develop strong cellular immune responses to M. leprae antigens and efficiently eliminate the bacilli, whereas at the "low resistant" pole, lepromatous leprosy (LL) patients fail to mount specific T-cell responses to M. leprae antigens and develop a multibacillary disseminated disease (9). Several lines of evidence suggest that the M. leprae-specific T-cell nonresponsiveness observed in LL patients is not due to an absence ofM. leprae-reactive T cells or to defective antigen presentation as claimed in earlier reports (10, 11) but may be due to active down-regulation of M. leprae-specific T-cell responses, presumably by suppressor T (Ts) cells induced by M. leprae (12-14). Supporting this latter premise, we and others have previously isolated CD4+ and CD8+ T-cell clones from the peripheral blood and skin lesions of LL patients and shown that these T cells specifically suppress mycobacterium-specific T-cell responses in vitro (15-17). Previous analyses of these Ts clones revealed that they, like M. leprae-induced Th cells, express T-cell receptor (TCR) a and , ( chains and are restricted by HLA-DR or HLA-DQ molecules (15,16,18,38
We have investigated the effect of soluble recombinant CD4 (sCD4) on the antigen specific (BCG, peptides of mycobacterial 65 kDa hsp) responses of T cell lines of T cell clones. The majority of the antigen specific clones could be suppressed in their antigen driven response by the addition of sCD4, while others, including the parental polyclonal T cell line, were not. The suppression of the specific T cell response was reversed by the addition of anti-CD3, did not affect the proliferative response to IL-2, and was independent of the amount of antigen. A decreased capacity to produce IFN-gamma in response to the antigen by the addition of sCD4 was seen only with those clones that were also inhibited in their specific proliferative response. This model may be used to delineate further the interaction between T cells and the antigen presenting cell, and the finding may limit the possible in vivo use of sCD4 in the therapy of human immunodeficiency virus (HIV) infections.
Both protective immunity and immunopathology induced by mycobacteria are dependent on Ag-specific, CD4+ MHC class II-restricted T lymphocytes. The identification of Ag recognized by T cells is fundamental to the understanding of protective and pathologic immunity as well as to the design of effective immunoprophylaxis and immunotherapy strategies. Although some T cell clones are known to respond to recombinant mycobacterial heat shock proteins (hsp) like hsp3 65, the specificity of most T cells has remained unknown. We therefore have undertaken a specificity analysis of 48 well defined Mycobacterium leprae- and/or Mycobacterium tuberculosis-reactive (Th-1-like) T cell clones. Most clones (n = 44) were derived from different leprosy patients, and the remainder from one healthy control. Their HLA restriction molecules were DR2, DR3, DR4, DR5, DR7, DQ, or DP. T cell clones were stimulated with large numbers (n = 20 to 40) of mycobacterial SDS-PAGE-separated fractions bound to nitrocellulose. Each clone recognized a single fraction or peak with a particular Mr range. Some of the clones (n = 7) recognized the fraction that contained the hsp 65 as confirmed with the recombinant Ag. Most clones (n = 41), however, responded to Ag other than the hsp 65. Nine clones responded to a 67- to 80-kDa fraction. Five of them responded also to an ATP-purified, 70-kDa M. leprae protein, but only one of these five (that was HLA-DR2 restricted and cross-reactive with M. tuberculosis) recognized the recombinant C-terminal half (amino acids 278-621) of the M. leprae hsp 70 molecule and also recognized the recombinant M. tuberculosis hsp 70. We therefore have used the 5' part of the M. leprae hsp 70 gene that we have cloned recently. This fragment (that encodes amino acids 6-279) was indeed recognized by the other four M. leprae-specific T cells that were all HLA-DR3 restricted and did not cross-react with the highly homologous (95%) M. tuberculosis hsp 70. These results suggest that this novel fragment is a relevant T cell-stimulating Ag for leprosy patients. A panel of other recombinant Ag, including hsp 18 was tested. The majority of T cell clones appeared to recognize antigenic fractions distinct from hsp. In conclusion, T cells of leprosy patients see a large variety of different Ag including non-hsp, and one newly recognized moiety is the N-terminal M. leprae hsp 70 fragment.(ABSTRACT TRUNCATED AT 400 WORDS)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.