The interfacial Dzyaloshinskii–Moriya interaction (DMI) in ferromagnetic/non‐magnetic‐metal bilayers is essential to stabilize chiral spin textures for potential applications. Recent works reveal that the interlayer DMI is beneficial to designing 3D chiral spin textures that possess fundamental importance and the associated technological promises. Here, the interlayer DM constants are determined quantitatively in synthetic ferromagnetic/antiferromagnetic Pt/Co/Pt/Ru/Pt/Co/Ta structures. The results demonstrate that the interlayer DMI shows uniaxial anisotropic characteristics. The first‐principles calculations elucidate that the anisotropic interlayer DMI is induced by the in‐plane symmetry breaking along two high symmetric directions, which favors the magnetization of adjacent ferromagnetic layers canting in different directions. The anisotropic interlayer DMI is also confirmed by spin‐orbit torque driven asymmetric magnetization switching. Moreover, the interlayer DMI can be tuned by the Ru‐layer‐thickness and beneficial to designing 3D spin textures for future spintronic devices.
FeMn films with and without a Cu seed layer were deposited on Y3Fe5O12 (YIG) substrates, and their inverse spin Hall effect (ISHE) was examined through both spin Seebeck effect and spin pumping.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.