Sequence analysis of the large virulence plasmid pLVPK in Klebsiella pneumoniae CG43 revealed the presence of another mucoid factor encoding gene rmpA besides rmpA2. Promoter activity measurement indicated that the deletion of rmpA reduced K2 capsular polysaccharide (CPS) biosynthesis, resulting in decreased colony mucoidy and virulence in mice. Introduction of a multicopy plasmid carrying rmpA restored CPS production in the rmpA or rmpA2 mutant but not in the rcsB mutant. Transformation of the rmpA deletion mutant with an rcsB-carrying plasmid also failed to enhance CPS production, suggesting that a cooperation of RmpA with RcsB is required for regulatory activity. This was further corroborated by the demonstration of in vivo interaction between RmpA and RcsB using two-hybrid analysis and coimmunoprecipitation analysis. A putative Fur binding box was only found at the 5 noncoding region of rmpA. The promoter activity analysis indicated that the deletion of fur increased the rmpA promoter activity. Using electrophoretic mobility shift assay, we further demonstrated that Fur exerts its regulatory activity by binding directly to the promoter. As a result, the fur deletion mutant exhibited an increase in colony mucoidy, CPS production, and virulence in mice. In summary, our results suggested that RmpA activates CPS biosynthesis in K. pneumoniae CG43 via an RcsB-dependent manner. The expression of rmpA is regulated by the availability of iron and is negatively controlled by Fur.
A metal-oxide field-effect transistor ͑MOSFET͒ based on an electroluminescent conjugated polymer is fabricated on a glass substrate. It is found that the mobility horizontal to the substrate is two to three orders of magnitude larger than the mobility vertical to the substrate. The high horizontal mobility is attributed to the in-plane chain alignment in amorphous spin-coated films. We demonstrate an active pixel in which the light-emitting diode and the driving MOSFET share the same active polymer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.