A proton beam with a velocity of the order of 10 9 cm/s is generated to interact with a charge neutral hydrogen-boron medium such as H 3 B. The created charged particles are confined by magnetic fields. This concept was the basis for a novel non-thermal fusion reactor, published recently in Laser and Particle Beams [1]. The fusion is initiated by protons followed by a process of chain reactions in a neutral medium density of the order of 10 19 cm −3 , heated by the pB 11 fusion created alphas up to a temperature of about one electron volt. In this system, the radiation losses by bremsstrahlung are negligible and the plasma thermal pressure is low. The ionization of the gaseous medium is caused by the alpha elastic nuclear collisions with the hydrogen atoms and their thermal heating and it is < 10 −4. An external electric field is applied to avoid the energy losses of the protons particles by friction, due to their interaction with the electrons of the medium, to keep the proton-boron fusion at the maximum cross section of about 600 keV at the center of mass frame of reference. The alphas created in the pB 11 fusion undergo nuclear elastic collisions with the hydrogen protons of the medium and causing a pB 11 chain reaction. In this paper the equation of motion of these proton and alphas are solved numerically for the one-dimensional (1D) case, and their possible solutions are analyzed and discussed. Specifically, it is shown how the electric field can mitigate the stopping power for the proton11-proton nuclear fusion. Our results show that starting from a bunch of 10 13 protons in our volume, an alpha number of particles of 6 × 10 16 was accepted after a 5 ms cycle of applying our specially designed electric field. Consequently, the medium temperature was raised to 1.3 eV. The aim of this paper is to present a new concept by addressing only the main physical processes and not to present a complete engineering design. The configuration for mitigating the stopping power and the numerical solution in this paper is novel and promises few applications with a viable proton-boron11 fusion reactions.
We report a highly localized, rapid-response pressure measurement of a shock wave front in a solid by utilizing a miniature fiber-optic-based probe. The probe used was a 100 μm-long fiber Bragg grating (FBG) inscribed on a standard silica communication fiber, 125 μm in diameter. The optical fiber was embedded within a ceramic zirconia ferrule and was shocked axially by a polycarbonate impactor fired from a gas gun. In a second ferrule, included in the same experiment, a 1 mm long FBG was embedded for comparison. Both FBGs were positioned at the front face of their respective ferrules, in order to sense the region where the shock wave is pristine, with no release waves, and where the stress conditions were expected to be constant for a few hundreds of nanoseconds. A simulation has been performed using LS-DYNA software describing the temporal dependence of the axial stress operating on the zirconia target and the embedded fiber gratings. The reflected spectra of both fiber grating probes were interrogated by an array of wavelength division demultiplexers and 200 MHz InGaAs detectors. Both probes exhibited a wavelength shift that corresponded to the pressure profile of the shock wave that traveled through the fiber, agreeing quite well with the predictions of the simulation. The wavelength blueshift was about 3.5 nm under a calculated shock pressure in the silica of 320 MPa, induced by a shock pressure of 700 MPa in the host zirconia target. Overall, the 100 μm probe demonstrated superior measurement capabilities to the 1 mm probe, both in time response and localization, as well as better agreement with the simulation. Multiple probes can be applied to provide high resolution mapping of shock phenomena in space and time, thus assisting in establishing the dynamic properties of materials under impact loading.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.