To control the ignition timing in a gasoline compression ignition (GCI) engine, ozone (O3) was introduced into the intake air. The O-radicals are decomposed from the O3 above 550 K during the compression stroke, and combine into oxygen (O2) in a very short time.The authors adopted two-stage direct injection to mix the fuel injected into the cylinder at very early timings with the O-radicals, before a reduction of the O-radicals would take place. The ignition timing of the second fuel injection for the main combustion is controlled by the heat release from the first fuel injection. In this paper, engine experiments were performed to examine the feasibility of the ignition control with a primary reference fuel, octane number 90 (PRF90). The O3 concentration, the quantity, and the timing of the first injection were changed as experimental parameters. The results showed that a very small quantity of O3, tens of ppm, is sufficient to promote the heat release of the first injected fuel. The heat release increases with the O3 concentration and
The growth mechanism of Fe nanowires and the role of Au nanoparticle catalysis were revealed using transmission electron microscopy and electron diffraction analysis. Fe nanowire has a high aspect ratio and unique [021̄] orientation.
Considerable attention has been paid to the research of the electron tomography due to determine the three-dimensional (3D) structure of materials [1]. One of the electron tomography techniques, focused ion beam/scanning electron microscopy (FIB-SEM) imaging has advantages of high resolutions (10 nm), large area observation (μm order) and simultaneous energy dispersive x- ray microanalysis (EDS)/ electron backscatter diffraction (EBSD) analysis. The purpose of this study, three-dimensional EBSD analysis of ODS ferritic steel which carried out cold work using FIB-SEM equipment was conducted, and it aimed at analyzing the microstructure obtained there. The zone annealing tests were conducted for ferritic steel [2,3], which were produced through mechanical alloying and hot-extrusion. After zone annealing, specimens were mechanically polished with #400∼4000 emery paper, 1 µm diamond paste and alumina colloidal silica. The serial sectioning and the 3D-electron backscattering diffraction (3D-EBSD) analysis were carried out. We made the micro pillar (30 x 30 x 15 µm). The EBSD measurements were carried out in each layer after serial sectioning at a step size and milling depth was 80 nm with 30 slices. After EBSD analysis, the series of cross-sectional images were aligned according to arbitrarily specified areas and then stacked up to form a volume. Consequently, we obtained the 3D-IPF maps for ODS ferritic steel. In this specimen, the {111} and {001} grains are layered by turns. In addition, the volume fraction value of both plane are similar. The aspect ratio increases with specimen depth. The 3D-EBSD mapping is useful to analysis of the bulk material since this method obtain many microstructure information, such a shape, volume and orientation of the crystal, grain boundary.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.