Abstract:The development of expressed sequence tags (ESTs) from pea has provided a useful source for mining novel simple sequence repeat (SSR) markers. In the present research, in order to find EST-derived SSR markers, 18 552 pea ESTs from the National Center for Biotechnology Information (NCBI) database were downloaded and assembled into 10 086 unigenes. A total of 586 microsatellites in 530 unigenes were identified, indicating that merely 5.25% of sequences contained SSRs. The most abundant SSRs within pea were tri-nucleotide repeat motifs, and among all the tri-nucleotide repeats, the motif GAA was the most abundant type. In total, 49 SSRs were used for primer design. EST-SSR loci were subsequently screened on 10 widely adapted varieties in China. Of these, nine loci showed polymorphic profiles that revealed two to three alleles per locus. The polymorphism information content value ranged from 0.18 to 0.58 with an average of 0.41. Furthermore, transferable analysis revealed that some of these loci showed transferability to faba bean. Because of their polymorphism and transferability, these nine novel EST-SSRs will be valuable tools for marker-assisted breeding and comparative mapping of pea in the future.
IntroductionTraumatic brain injury (TBI) remains a leading cause of disability and death among young people in China. Unfortunately, no specific pharmacological agents to block the progression of secondary brain injury have been approved for clinical treatment. Recently, neuroprotective effects of erythropoietin (EPO) have been demonstrated in addition to its principal function in erythropoiesis, and hence it is viewed as a potential drug for TBI. In this study, we have investigated the neuroprotective effects of EPO associated with immune/inflammatory modulation in a mouse experimental TBI model.Methods EPO (5000 U/kg body weight, i.p.) was injected at 1 hr, 1, 2, and 3 days after TBI, and its effect on cognitive function, brain edema, immune/inflammatory cells including regulatory T cells (Tregs), neutrophils, CD3+ T cells, and microglia, cytokines including interleukin‐10 (IL‐10), transforming growth factor‐β (TGF‐β), interleukin‐1β (IL‐1β), and tumor necrosis factor‐α (TNF‐α) were evaluated at different time points after treatment.Results EPO treatment significantly decreased brain edema and improved cognitive function when compared to Saline‐treated mice (p < .05). EPO treatment also significantly increased Tregs level in spleen and injured brain tissue as well as significantly reduced the infiltration and activation of immune/inflammatory cells (neutrophils, CD3+T cells, and microglia) in the injured hemisphere compared to Saline‐treated control animals (p < .05). In addition, ELISA analysis demonstrated that EPO treatment increased the expression of anti‐inflammatory cytokine IL‐10, but decreased the expression of proinflammatory cytokine IL‐1β and TNF‐α in the injured brain tissue (p < .05).ConclusionsThese findings suggest that EPO could improve neurological and cognitive functional outcomes as well as regulate immune/inflammatory reaction in TBI.
IntroductionCognitive deficits associated with traumatic brain injury (TBI) reduce patient quality of life. However, to date, there have been no effective treatments for TBI‐associated cognitive deficits. In this study, we aimed to determine whether electrical stimulation (ES) improves cognitive deficits in TBI rats.MethodsRats were randomly divided into three groups: the Sham control group, electrical stimulation group (ES group), and No electrical stimulation control group (N‐ES group). Following fluid percussion injury, the rats in the ES group received ES treatment for 3 weeks. Potent cognitive function‐relevant factors, including the escape latency, time percentage in the goal quadrant, and numbers of CD34+ cells, von Willebrand Factor+ (vWF +) vessels, and circulating endothelial progenitor cells (EPCs), were subsequently assessed using the Morris water maze (MWM) test, immunohistochemical staining, and flow cytometry.ResultsCompared with the rats in the N‐ES group, the rats in the ES group exhibited a shorter escape latency on day 3 (p = .025), day 4 (p = .011), and day 5 (p = .003), as well as a higher time percentage in the goal quadrant (p = .025) in the MWM test. After 3 weeks of ES, there were increased numbers of CD34+ cells (p = .008) and vWF + vessels (p = .000) in the hippocampus of injured brain tissue in the ES group compared with those in the N‐ES group. Moreover, ES also significantly increased the number of EPCs in the peripheral blood from days 3 to 21 after TBI in the ES group (p < .05).ConclusionsTaken together, these findings suggest that ES may improve cognitive deficits induced by TBI, and this protective effect may be a result, in part, of enhanced angiogenesis, which may be attributed to the increased mobilization of EPCs in peripheral blood.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.