Chemokines are implicated in the neuroinflammation of several chronic neurodegenerative disorders. However, the precise role of chemokines in neurodegeneration is unknown. Thiamine deficiency (TD) causes abnormal oxidative metabolism in the brain as well as a well-defined microglia activation and neurodegeneration in the submedial thalamus nucleus (SmTN), which are common features of neurodegenerative diseases. We evaluated the role of chemokines in neurodegeneration and the underlying mechanism in a TD model. Among the chemokines examined, TD selectively induced neuronal expression of monocyte chemoattractant protein-1 (MCP-1) in the SmTN prior to microglia activation and neurodegeneration. The conditioned medium collected from TD-induced neurons caused microglia activation. With a neuron/microglia co-culture system, we showed that MCP-1-induced neurotoxicity required the presence of microglia and exogenous MCP-1 was able to activate microglia and stimulated microglia to produce cytokines. A MCP-1 neutralizing antibody inhibited MCP-1-induced microglia activation and neuronal death in culture and in the thalamus. MCP-1 knock-out mice were resistant to TD-induced neuronal death in SmTN. TD selectively induced the accumulation of reactive oxygen species in neurons, and antioxidants blocked TD-induced MCP-1 expression. Together, our results indicated an induction of neuronal MCP-1 during mild impairment of oxidative metabolism caused microglia recruitment/activation, which exacerbated neurodegeneration.
TNF receptor (TNFR)-associated factor TRAF6 is a key activator of NF-kB, playing a critical role in the regulation of innate immune responses and their connection to adaptive immune responses. TRAF6 interactions determine receptor-induced cell death versus survival. TRAF6 has been implicated in cancer but its contributions have not been investigated deeply. In this study, we show that TRAF6 upregulates expression of hypoxia-inducible factor (HIF)-1a. TRAF6 affects HIF-1a protein levels but has little effect on mRNA level. TRAF6 increases HIF-1a protein independent of oxygen. We found that TRAF6 binds HIF-1a and mediates its K63-linked polyubiquitination. The E3 ligase activity of TRAF6 was required to increase HIF-1a protein levels. Finally, we showed that TRAF6 promoted tumor angiogenesis and growth. Our results reveal how TRAF6 functions to upregulate HIF-1a expression and promote tumor angiogenesis. Cancer Res; 73(15);
BackgroundAccumulation of β-amyloid peptides is an important hallmark of Alzheimer’s disease (AD). Tremendous efforts have been directed to elucidate the mechanisms of β-amyloid peptides degradation and develop strategies to remove β-amyloid accumulation. In this study, we demonstrated that a subpopulation of oligodendroglial precursor cells, also called NG2 cells, were a new cell type that can clear β-amyloid peptides in the AD transgene mice and in NG2 cell line.ResultsNG2 cells were recruited and clustered around the amyloid plaque in the APPswe/PS1dE9 mice, which is Alzheimer’s disease mouse model. In vitro, NG2 cell line and primary NG2 cells engulfed β-amyloid peptides through the mechanisms of endocytosis in a time dependent manner. Endocytosis is divided into pinocytosis and phagocytosis. Aβ42 internalization by NG2 cells was mediated by actin-dependent macropinocytosis. The presence of β-amyloid peptides stimulated the autophagic pathway in NG2 cells. Once inside the cells, the β-amyloid peptides in NG2 cells were transported to lysosomes and degraded by autophagy.ConclusionsOur findings suggest that NG2 cells are a new cell type that can clear β-amyloid peptides through endocytosis and autophagy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.