This review systematically summarizes recent studies on Fe-based biodegradable metallic materials and discusses these findings in terms of their processing methods, mechanical properties, degradability and biocompatibility.
Cross-linked protein crystal technology, as either a protein stabilisation or enzyme immobilisation method, has garnered more attention recently. This method not only can retain the original activity of the protein molecule but can also significantly enhance the crystals' mechanical and chemical stability. This review presents the preparation and mechanism of cross-linked protein crystals using glutaraldehyde. The mechanical, chemical and thermal properties of the cross-linked protein crystals are also reviewed in detail. In addition, this paper summarises the applications of cross-linked protein crystals in the fields of materials science, biosensors, chromatographic analysis, oral delivery and protein crystal quality improvement. Finally, the limitations and perspectives on cross-linked protein crystals are presented.Crystallisation is a well-known approach to obtain highly puri-ed proteins. During crystallisation, protein molecules can be Fig. 2 A schematic diagram of the polymerisation of glutaraldehyde. 21This journal is
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.