Nanotechnology plays an important role in biological research, especially in the development of delivery systems with lower toxicity and greater efficiency. These include not only metallic nanoparticles, but also biopolymeric nanoparticles. Biopolymeric nanoparticles (BPNs) are mainly developed for their provision of several advantages, such as biocompatibility, biodegradability, and minimal toxicity, in addition to the general advantages of nanoparticles. Therefore, given that biopolymers are biodegradable, natural, and environmentally friendly, they have attracted great attention due to their multiple applications in biomedicine, such as drug delivery, antibacterial activity, etc. This review on biopolymeric nanoparticles highlights their various synthesis methods, such as the ionic gelation method, nanoprecipitation method, and microemulsion method. In addition, the review also covers the applications of biodegradable polymeric nanoparticles in different areas—especially in the pharmaceutical, biomedical, and agricultural domains. In conclusion, the present review highlights recent advances in the synthesis and applications of biopolymeric nanoparticles and presents both fundamental and applied aspects that can be used for further development in the field of biopolymeric nanoparticles.
Cobalt nanoparticles (CoNPs) are promising nanomaterials with exceptional catalytic magnetic, electronic, and chemical properties. The nano size and developed surface open a wide range of applications of cobalt nanoparticles in biomedicine along with those properties. The present review assessed the current environmentally friendly synthesis methods used to synthesize CoNPs with various properties, such as size, zeta potential, surface area, and magnetic properties. We systematized several methods and provided some examples to illustrate the synthetic process of CoNPs, along with the properties, the chemical formula of obtained CoNPs, and their method of analysis. In addition, we also looked at the potential application of CoNPs from water purification cytostatic agents against cancer to theranostic and diagnostic agents. Moreover, CoNPs also can be used as contrast agents in magnetic resonance imaging and photoacoustic methods. This review features a comprehensive understanding of the synthesis methods and applications of CoNPs, which will help guide future studies on CoNPs.
Bacterial motility provides the ability for bacterial dissemination and surface exploration, apart from a choice between surface colonisation and further motion. In this study, we characterised the movement trajectories of pathogenic and probiotic Escherichia coli strains (ATCC43890 and M17, respectively) at the landing stage (i.e., leaving the bulk and approaching the surface) and its correlation with adhesion patterns and efficiency. A poorly motile strain JM109 was used as a control. Using specially designed and manufactured microfluidic chambers, we found that the motion behaviour near surfaces drastically varied between the strains, correlating with adhesion patterns. We consider two bacterial strategies for effective surface colonisation: horizontal and vertical, based on the obtained results. The horizontal strategy demonstrated by the M17 strain is characterised by collective directed movements within the horizontal layer during a relatively long period and non-uniform adhesion patterns, suggesting co-dependence of bacteria in the course of adhesion. The vertical strategy demonstrated by the pathogenic ATCC43890 strain implies the individual movement of bacteria mainly in the vertical direction, a faster transition from bulk to near-surface swimming, and independent bacterial behaviour during adhesion, providing a uniform distribution over the surface.
Of great importance in materials science is the design of effective functional materials that can be used in various technological fields. Nanomodified materials, which have fundamentally new properties and provide previously unrealized properties, have acquired particular importance. When creating heating elements and materials for deformation measurement, it is necessary to understand the patterns of heat release under conditions of mechanical deformation of the material, as this expands the potential applications of such materials. A study of elastomers modified with multi-walled carbon nanotubes (MWCNTs) has been carried at the MWCNTs concentration of 1–8 wt.%. The modes of heat release of nanomodified elastomers at a voltage of 50 V at different levels of tension are reported. The increment of the MWCNTs concentration to 7 wt.% leads to an increment in the power of heat emissions. It is worth noting the possibility of using the obtained elastomer samples with MNT as sensitive elements of strain sensors, which will allow obtaining information about physical and chemical parameters following the principles of measuring the change in electrical resistance that occurs during stretching and torsion. The changes in conductivity and heat emission under different conditions have been studied in parallel with Raman mapping and infrared thermography. The reported studies allow to make the next step to develop flexible functional materials for the field of electric heating and deformation measurement based on elastic matrices and nanoscale conductive fillers.
Metal-organic frameworks (MOFs) are a very promising platform for applications in various industries. In recent years, a variety of methods have been developed for the preparation and modification of MOFs, providing a wide range of materials for different applications in life science. Despite the wide range of different MOFs in terms of properties/sizes/chemical nature, they have not found wide application in biomedical practices at present. In this review, we look at the main methods for the preparation of MOFs that can ensure biomedical applications. In addition, we also review the available options for tuning the key parameters, such as size, morphology, and porosity, which are crucial for the use of MOFs in biomedical systems. This review also analyses possible applications for MOFs of different natures. Their high porosity allows the use of MOFs as universal carriers for different therapeutic molecules in the human body. The wide range of chemical species involved in the synthesis of MOFs makes it possible to enhance targeting and prolongation, as well as to create delivery systems that are sensitive to various factors. In addition, we also highlight how injectable, oral, and even ocular delivery systems based on MOFs can be used. The possibility of using MOFs as therapeutic agents and sensitizers in photodynamic, photothermal, and sonodynamic therapy was also reviewed. MOFs have demonstrated high selectivity in various diagnostic systems, making them promising for future applications. The present review aims to systematize the main ways of modifying MOFs, as well as the biomedical applications of various systems based on MOFs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.