Phthalates are lipophilic and tend to accumulate in adipose tissue, an important regulator of energy balance and glucose homeostasis. The study aimed to determine whether cellular phthalate accumulation influenced fat cell energy metabolism. Following a 3-day treatment with adipogenesis-inducing medium and a 2-day treatment with adipogenesis-maintaining medium, 3T3-L1 cells differentiated into adipocytes in the presence of a phthalate at a clinically relevant concentration (30-300 μM) for another 6 days. Two phthalates, di(2-ethylhexyl)phthalate and di-n-butylphthalate, and their metabolites, mono(2-ethylhexyl)phthalate (MEHP) and mono-n-butylphthalate, were used here. The phthalate treatments caused no marked effect on cytotoxicity and adipogenesis. Only the MEHP-treated adipocytes were found having smaller lipid droplets; MEHP accumulated in cells in a dose- and time-dependent manner. The MEHP-treated adipocytes exhibited significant increases in lipolysis and glucose uptake; quantitative real-time polymerase chain reaction (qPCR) analysis revealed correlated changes in expression of marker genes involved in adipogenesis, lipid metabolism, and glucose uptake. Analysis of oxygen consumption rate (a mitochondrial respiration indicator) and extracellular acidification rate (a glycolysis indicator) indicated a higher energy metabolism in the adipocytes. qPCR analysis of critical genes involved in mitochondrial biogenesis and/or energy metabolism showed that expression of peroxisome proliferator-activated receptor γ coactivator-1α, sirtuin 3, and protein kinase A were significantly enhanced in the MEHP-treated adipocytes. In vitro evidence of MEHP impacts on lipolysis, glucose uptake/glycolysis, and mitochondrial respiration/biogenesis demonstrates that MEHP accumulation disturbs energy metabolism of fat cells.
A recombinant Huh7-PPRE-Luc cell line for analyzing the peroxisome proliferator response element (PPRE)-driven luciferase activity was established. The cells exhibited a good dose-response induction in PPRE-driven luciferase activity by three subtypes of peroxisome proliferator-activated receptor (PPAR) agonists as well as by a retinoid X receptor agonist, 9-cis-retinoic acid. Among five environmental chemicals tested, benzyl butyl phthalate and bisphenol induced PPRE-driven luciferase activation in Huh7-PPRE-Luc cells and caused adipogenic differentiation of 3T3-L1 cells. This recombinant Huh7-PPRE-Luc cell line would be useful for screening potential environmental obesogens with PPAR activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.