A higher oxidative stress may contribute to the pathogenesis of coronary artery disease (CAD). The purpose of this study was to investigate the relationship between coenzyme Q10 concentration and lipid peroxidation, antioxidant enzymes activities and the risk of CAD. Patients who were identified by cardiac catheterization as having at least 50% stenosis of one major coronary artery were assigned to the case group (n = 51). The control group (n = 102) comprised healthy individuals with normal blood biochemical values. The plasma coenzyme Q10, malondialdehyde (MDA) and antioxidant enzymes activities (catalase (CAT), superoxide dismutase (SOD), glutathione peroxidase (GPx)) were measured. Subjects with CAD had significant lower plasma coenzyme Q10, CAT and GPx activities and higher MDA and SOD levels compared to those of the control group. The plasma coenzyme Q10 was positively correlated with CAT and GPx activities and negatively correlated with MDA and SOD. However, the correlations were not significant after adjusting for the potential confounders of CAD with the exception of SOD. A higher level of plasma coenzyme Q10 (≥0.52 μmol/L) was significantly associated with reducing the risk of CAD. Our results support the potential cardioprotective impact of coenzyme Q10.
An extraction technique using MTBE (methyl tert. butyl ether) and reagent water in combination with ion chromatography and conductivity determination was developed to quantify dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) concentrations in raw water after chlorination. The detection limit of the method was 0.45 and 1.50 microg/L for DCAA and TCAA, respectively. Mean values of recovery ranged from 90 to 96% for DCAA and 95 to 108% for TCAA. The evaluation of recovery and precision of the method indicates that the performance characteristics are comparable with gas chromatographic (GC) methods reported in literature. In addition, the procedure is simple, fast, and does not need any derivatization step. Application of the analytical method to the determination of DCAA and TCAA in real samples is shown.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.