The drop‐casting method for the suspension of nanomaterials on conducting surfaces is a commonly used procedure for evaluating the electrochemical properties of the drop‐cast materials. In this study, we pinpoint a key limitation of the method, which may lead to misinterpretation of the obtained data, especially when evaluating heterogeneous electron‐transfer rates. The electrochemical responses recorded at 1 mm‐diameter copper electrodes modified with porous layers of drop‐cast multiwalled carbon nanotubes (MWCNTs) in 0.1 M Na2SO4 aqueous solutions were examined. Standard amounts of the MWCNTs that are typically used for the drop‐casting procedure (1 mg MWCNT in 1 mL of dimethylformamide) were deposited drop wise on the surface of the copper electrodes. Layers of MWCNTs were progressively built up on the electrode surface by varying the number of drops from 0 to 10. The ability of the MWCNTs to cover and prevent diffusion to the base copper electrode was assessed by performing oxidative cyclic (CV) and linear‐sweep voltammetry (LSV) experiments in the presence of aggressive SO42− supporting electrolyte, where a large oxidative current indicated the occurrence of corroding copper metal. It was demonstrated that a total of 10 drops of the coating solution (equivalent to 640 μg cm−2 of MWCNTs per unit area) was still insufficient in providing complete coverage over the underlying electrode surface (as a corrosion current was still observed), even though considerably lower CNT loadings have been applied in many literature reports. The electrochemical results indicate that, for experiments that utilize the drop‐casting procedure to modify electrode surfaces, it cannot be assumed that the base electrode, nor the pore structure of the coating material, does not significantly contribute to the overall observed voltammetric response.
Aryl hydrocarbon receptor (AHR) signaling has been suggested to play roles in various physiological functions independent of its xenobiotic activity, including cell cycle regulation, immune response, and embryonic development. Several endogenous ligands were also identified by high-throughput screening techniques. However, the mechanism by which these molecules mediate AHR signaling in certain functions is still elusive. In this study, we investigated the possible pathway through which AHR and its endogenous ligands regulate neural development. We first identified two neuroactive steroids, 3α,5α-tetrahydrocorticosterone and 3α,5β-tetrahydrocorticosterone (5α-and 5β-THB), as novel AHR endogenous ligands through the use of an ultrasensitive dioxin-like compound bioassay and liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS). We then treated zebrafish embryos with 5α-and 5β-THB, which enhance the expression of neurogenesis marker HuC. Furthermore, 5α-and 5β-THB both enhanced the expression of myelinating glial cell markers, sex determining region Y-box 10 (Sox10), and myelin-associated proteins myelin basic protein (Mbp) and improved the mobility of zebrafish larvae via the Ahr2 pathway. These results indicated that AHR mediates zebrafish neurogenesis and gliogenesis, especially the differentiation of oligodendrocyte or Schwann cells. Additionally, we showed that these molecules may induce neuroblastoma (NB) cell differentiation suggesting therapeutic potential of 5α-and 5β-THB in NB treatment. In summary, our results reveal that 5α-and 5β-THB are endogenous ligands of AHR and have therapeutic potential for NB treatment. By the interaction with THB, AHR signaling regulates various aspects of neural development.
The electrochemical behavior of selected phenolic benzotriazoles (BZTs), namely 2‐(2H‐benzotriazol‐2‐yl)‐4,6‐bis(1‐methyl‐1‐phenylethyl)phenol and 2,4‐di‐tert‐butyl‐6‐(5‐chlorobenzotriazol‐2‐yl)phenol (commercial names UV234 and UV327, respectively) were examined with cyclic voltammetry (CV) and controlled potential electrolysis (CPE) in acetonitrile and dichloromethane solutions. CV indicated that both phenolic BZTs undergo a chemically irreversible oxidation process at approximately Ep°x=+1.0 V vs. Fc/Fc+ (where Ep°x is the anodic peak potential and Fc=ferrocene) to form compounds that cannot be electrochemically converted back to the starting material on the voltammetric timescale. In basic conditions, cyclic voltammetry experiments indicated that the corresponding phenolates (prepared by reacting the phenols with equiv. mols of n‐Bu4NOH) were oxidized at Ep°x∼−0.2 V vs. Fc/Fc+ via a one‐electron diffusion controlled process with anodic (ip°x) to cathodic (ipred) peak current ratios (ip°x/ipred)≫1, suggesting that the produced phenoxyl radicals decomposed rapidly via a chemical step. However, electron paramagnetic resonance (EPR) experiments performed on the bulk electrolyzed solutions of the phenolates after one‐electron bulk oxidation indicated long lifetimes of the UV234. and UV327. phenoxyl radicals. Therefore, the long timescale CPE and spectroscopic (UV‐vis and EPR) studies provided good evidence of a reversible dimerization mechanism between the phenoxyl radicals, which explained the apparent discrepancy with the short timescale CV experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.