As e-learning systems become more prevalent, there is a growing need for them to accommodate individual differences between students. This paper addresses the problem of how to personalize educational content to students in order to maximize their learning gains over time. We present a new computational approach to this problem called MAPLE (Multi-Armed Bandits based Personalization for Learning Environments) that combines difficulty ranking with multiarmed bandits. Given a set of target questions MAPLE estimates the expected learning gains for each question and uses an exploration-exploitation strategy to choose the next question to pose to the student. It maintains a personalized ranking over the difficulties of question in the target set which is used in two ways: First, to obtain initial estimates over the learning gains for the set of questions. Second, to update the estimates over time based on the students responses. We show in simulations that MAPLE was able to improve students' learning gains compared to approaches that sequence questions in increasing level of difficulty, or rely on content experts. When implemented in a live e-learning system in the wild, MAPLE showed promising results. This work demonstrates the efficacy of using stochastic approaches to the sequencing problem when augmented with information about question difficulty.
This note points out that the recently published sequential track correlation algorithm overlooked the correlation in time of the state estimation errors.
One of the most challenging problems associated with the development of accurate and reliable application of computer vision and artificial intelligence in agriculture is that, not only are massive amounts of training data usually required, but also, in most cases, the images have to be properly labeled before models can be trained. Such a labeling process tends to be time consuming, tiresome, and expensive, often making the creation of large labeled datasets impractical. This problem is largely associated with the many steps involved in the labeling process, requiring the human expert rater to perform different cognitive and motor tasks in order to correctly label each image, thus diverting brain resources that should be focused on pattern recognition itself. One possible way to tackle this challenge is by exploring the phenomena in which highly trained experts can almost reflexively recognize and accurately classify objects of interest in a fraction of a second. As techniques for recording and decoding brain activity have evolved, it has become possible to directly tap into this ability and to accurately assess the expert’s level of confidence and attention during the process. As a result, the labeling time can be reduced dramatically while effectively incorporating the expert’s knowledge into artificial intelligence models. This study investigates how the use of electroencephalograms from plant pathology experts can improve the accuracy and robustness of image-based artificial intelligence models dedicated to plant disease recognition. Experiments have demonstrated the viability of the approach, with accuracies improving from 96% with the baseline model to 99% using brain generated labels and active learning approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.