ObjectiveProgrammed death 1 and its ligand 1 (PD-1/PD-L1) immunotherapy is promising for late-stage lung cancer treatment, however, the response rate needs to be improved. Gut microbiota plays a crucial role in immunotherapy sensitisation and Panax ginseng has been shown to possess immunomodulatory potential. In this study, we aimed to investigate whether the combination treatment of ginseng polysaccharides (GPs) and αPD-1 monoclonal antibody (mAb) could sensitise the response by modulating gut microbiota.DesignSyngeneic mouse models were administered GPs and αPD-1 mAb, the sensitising antitumour effects of the combination therapy on gut microbiota were assessed by faecal microbiota transplantation (FMT) and 16S PacBio single-molecule real-time (SMRT) sequencing. To assess the immune-related metabolites, metabolomics analysis of the plasma samples was performed.ResultsWe found GPs increased the antitumour response to αPD-1 mAb by increasing the microbial metabolites valeric acid and decreasing L-kynurenine, as well as the ratio of Kyn/Trp, which contributed to the suppression of regulatory T cells and induction of Teff cells after combination treatment. Besides, the microbial analysis indicated that the abundance of Parabacteroides distasonis and Bacteroides vulgatus was higher in responders to anti-PD-1 blockade than non-responders in the clinic. Furthermore, the combination therapy sensitised the response to PD-1 inhibitor in the mice receiving microbes by FMT from six non-responders by reshaping the gut microbiota from non-responders towards that of responders.ConclusionOur results demonstrate that GPs combined with αPD-1 mAb may be a new strategy to sensitise non-small cell lung cancer patients to anti-PD-1 immunotherapy. The gut microbiota can be used as a novel biomarker to predict the response to anti-PD-1 immunotherapy.
BackgroundThe prognostic value of gender and age in the survival of nasopharyngeal carcinoma (NPC) patients treated with intensity-modulated radiotherapy (IMRT) is unclear. Several studies have suggested a female advantage in the prognosis of solid tumors. We investigated the relationship between gender differences and disease outcome in NPC patients treated with IMRT in South China.MethodsA total of 299 patients with non-disseminated NPC were analyzed retrospectively. IMRT was delivered with a simultaneous modulated, accelerated radiotherapy boost technique at prescribed doses of 70 Gy/30 fractions/6 weeks to the primary tumor (GTVp) and positive neck nodes (GTVn), 60Gy (2.0 Gy/day) to the clinical target volume (CTV) and upper neck region and 54 Gy (1.8 Gy/day) to the clinically negative low neck. A median boost dose of 9.2 Gy (4–20 Gy) was administered to patients with persistent disease at the primary site.ResultsWith a median follow-up of 52 months, the male patients had a significantly unfavorable 5-year OS (70.7% compared to 94.1%, P < 0.001), DPFS (71.5% compared to 87.3%, P = 0.029) and DMFS (77.2% compared to 89.7%, P = 0.036) than the female patients. In patients younger than 45, the male patients had a poorer 5-year OS (66.8% compared to 91.2%, P = 0.008), DPFS (59.9% compared to 91.2%, P = 0.005) and DMFS (66.4% compared to 94.0%, P = 0.004) than the female patients. For patients older than 45, only the 5-year OS (72.2% compared to 96.0%, P = 0.001) was significantly different.ConclusionsGender and age are strong independent prognostic factors for NPC in this study. We are the first to report that younger male patients were more likely to have distant metastases and exhibited inferior overall survival and disease progression-free survival rates compared to other patients.
MicroRNAs regulate post-transcriptional gene expression and play important roles in multiple cellular processes. In this study, we found that miR-421 suppresses kelch-like ECH-associated protein 1(KEAP1) expression by targeting its 3′untranslated region (3′UTR). A Q-PCR assay demonstrated that miR-421 is overexpressed in non-small cell lung cancer (NSCLC), especially in A549 cells. Consistently, the level of miR-421 was higher in clinical blood samples from lung cancer patients than in those from normal healthy donors, suggesting that miR-421 is an important lung cancer biomarker. Interestingly, overexpression of miR-421 reduced the level of KEAP1 expression, which further promoted lung cancer cell migration and invasion, as well as inhibited cell apoptosis both in vivo and in vitro. Furthermore, knockdown of miR-421 expression with an antisense morpholino oligonucleotide (AMO) increased ROS levels and treatment sensitivity to paclitaxel in vitro and in vivo, indicating that high miR-421 expression may at least partly account for paclitaxel tolerance in lung cancer patients. To find the upstream regulator of miR-421, one of the candidates, β-catenin, was knocked out via the CRISPR/Cas9 method in A549 cells. Our data showed that inhibiting β-catenin reduced miR-421 levels in A549 cells. In addition, β-catenin upregulation enhanced miR-421 expression, indicating that β-catenin regulates the expression of miR-421 in lung cancer. Taken together, our findings reveal the critical role of miR-421 in paclitaxel drug resistance and its upstream and downstream regulatory mechanisms. Therefore, miR-421 may serve as a potential molecular therapeutic target in lung cancer, and AMOs may be a potential treatment strategy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.