Although the stereo matching problem has been extensively studied during the past decades, automatically computing a dense 3D reconstruction from several multiple views is still a difficult task owing to the problems of textureless regions, outliers, detail loss, and various other factors. In this paper, these difficult problems are handled effectively by a robust model that outputs an accurate and dense reconstruction as the final result from an input of multiple images captured by a normal camera. First, the positions of the camera and sparse 3D points are estimated by a structure-from-motion algorithm and we compute the range map with a confidence estimation for each image in our approach. Then all the range maps are integrated into a fine point cloud data set. In the final step we use a Poisson reconstruction algorithm to finish the reconstruction. The major contributions of the work lie in the following points: effective range-computation and confidence-estimation methods are proposed to handle the problems of textureless regions, outliers and detail loss. Then, the range maps are merged into the point cloud data in terms of a confidence-estimation. Finally, Poisson reconstruction algorithm completes the dense mesh. In addition, texture mapping is also implemented as a post-processing work for obtaining good visual effects. Experimental results are presented to demonstrate the effectiveness of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.