Thelephora aurantiotincta is an edible mushroom belonging to the genus Thelephora; it grows in symbiosis with pine trees. Recently, phytochemical investigations have revealed that the genus Thelephora is an abundant source of p-terphenyl derivatives. However, their bioactivity has not yet been well characterized. In screening for natural materials with anticancer activity, a T. aurantiotincta ethanol extract (TAE) was found to decrease cell viability in human hepatocellular carcinoma cells (HepG2). In this study, a new p-terphenyl derivative, thelephantin O, and a known compound, vialinin A, were isolated as the principal bioactive components of TAE. These compounds decreased cell viability in HepG2 and human colonic carcinoma cells (Caco2), but not in noncancerous human hepatocytes. This is the first report of the isolation from T. aurantiotincta of selective cytotoxic agents against cancer cells.
A novel 2',3'-dihydroxy-p-terphenyl derivative, thelephantin O (TO), which has cancer-selective cytotoxicity, was isolated. This study investigated the underlying basis of the cytotoxicity of 2',3'-dihydroxy-p-terphenyl compounds in view of their ability to chelate metal ions. FeCl(2) significantly reduced TO-induced cytotoxicity, whereas several other salts of transition metals and alkaline-earth metals did not. A structure-activity relationship study using newly synthesized p-terphenyl derivatives revealed that o-dihydroxy substitution of the central benzene ring was necessary for both the cytotoxicity and Fe(2+) chelation of the compounds. Real-time PCR array and cell cycle analysis revealed that the TO-induced cytotoxicity was attributed to cell cycle arrest at the G1 phase via well-known cell cycle-mediated genes. The TO-induced changes in the cell cycle and gene expression were completely reversed by the addition of FeCl(2). Thus, it was concluded that Fe(2+) chelation occurs upstream in the pivotal pathway of 2',3'-dihydroxy-p-terphenyl-induced inhibition of cancer cell proliferation.
This study investigated the effects of lignin-derived lignophenols (LPs) on the oxidative stress and infiltration of macrophages in the kidney of streptozotocin (STZ)-induced diabetic rats. The diabetic rats were divided into four groups with 0%, 0.11%, 0.33% and 1.0% LP diets. The vehicle-injected controls were given a commercial diet. At 5 weeks, superoxide (O(2)(-)) production, macrophage kinetics, the degree of fibrosis in glomeruli and mRNA expression for monocyte chemoattractant protein-1 (MCP-1) were examined. The NADPH-stimulated O(2)(-) levels in the kidney of the diabetic rats treated with 1.0% LP were significantly lower than those in untreated diabetic rats. The number of macrophages, levels of MCP-1 mRNA expression and degree of glomerular fibrosis increased in untreated LP and these levels were significantly lower in 1.0%LP-treated rats. The results suggested that LPs suppress the excess oxidative stress, the infiltration and activation of macrophages and the glomerular expansion in STZ-induced diabetic kidneys.
In order to utilizeamericana flower has maltase inhibitory activity and antihyperglycemic effects, and is a safe and useful novel food material for the prevention of diabetes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.