Thermal management of wearable electronics integrated with biological tissues remains one of the critical challenges for their practical applications. The undesired heating can cause thermal discomfort or even thermal damage to biological tissues. Here, a novel thermal protecting substrate design is proposed for wearable electronics with abilities to manipulate the heat flow and efficiently absorb the excessive heat energy without the compromise of substrate flexibility. The thermal protecting substrate features a functional soft composite, which incorporates the embedded phase change material with a thin metal film on the top in a soft polymer. Compared with conventional substrate, the proposed thermal protecting substrate can reduce the peak temperature increase by over 85% with appropriate parameters. Experimental and numerical studies reveal the fundamental aspects of the design and operation of functional soft composite to effectively avoid excessive heating of biological tissues. Influences of geometrical parameters on temperature reduction are investigated. Device demonstration of thermal protecting substrate in a wearable heater on pig skin illustrates the unusual capability to reduce the maximum skin temperature, thereby enabling practical applications of wearable electronics and creating engineering opportunities in biointegrated applications requiring thermal protection of biological tissues.
The ORCID identification number(s) for the author(s) of this article can be found under https://doi.org/10.1002/aelm.202100611.
IntroductionRecent advances in wearable electronics have greatly helped personal healthcare, human motion monitoring and humanmachine interactions. [1][2][3] For wearable applications, the trans-
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.