Currently, despite the improvement of radiation safety measures, there is a risk of increasing frequency of radiation accidents and various disasters accompanied by explosions, fires and emissions of radionuclides. Emergencies (emergencies) of peacetime and wartime, especially accidents at radiation-hazardous facilities, including nuclear power plants, carry the danger not only of irradiation of people, but also at the same time thermal burns, mechanical injuries, chemical poisoning by harmful gorenje products, as well as other lesions. Experimental modeling of acute radiation and burn disease was carried out both separately and in combination. It was found that external total gamma irradiation of white rats at a dose of 7.5 Gy causes severe radiation sickness with characteristic clinical signs and high mortality of irradiated animals. A heat stroke simulation was performed by applying a metal plate heated to 190°C with an exposure time of 5 and 8 seconds. It turned out that the degree of burn depends on the time of contact with the surface of the body: its application within 5 seconds caused a burn of the III-A degree, an 8-second exposure of the IIIB degree, which was confirmed by the timing of formation, rejection of eshar and complete healing of the thermal lesion. The aggravating effect of ionizing radiation on the course and outcome of combined radiation-thermal pathology is demonstrated.
Since the search for the effective medication in combined lesions includes the selection of an optimal experimental model for such injuries, there is actually a study aimed at developing an optimal model of combined radiation-biology (Pasteurella) lesions. The pathogen Pasteurella multocida (as one of the most frequent pathogenic agents involved in both isolated and combined radiation-biology lesions of agricultural animals) was used as a model of a biological agent to reproduce experimental biological research. We employed the “Chinchilla” rabbits of 2.5–3.0 kg body weight as a biological model for doing combined radiation Pasteurella lesion. When determining the optimal model of combined radiation-biology (Pasteurella) lesion, we consider that in the joint action of various pathological agents on the organism, there is a synergistic effect of explosion agents, previously specifying minimal doses of external γ-radiation and pasteurellosis pathogen that in the joint action of nonfatal doses would be lethal. The first stage of the experiments determined the minimal doses of gamma rays and pasteurellosis pathogen that in joint action causes combined radiation-biology pathology. We examined 66 rabbits divided into 11 groups of 6 animals each to determine minimal doses of infectious agent-pasteurellosis pathogen. The animals of the first 9 groups were given subcutaneously Pasteurella species at doses 1·109, 1·108, 1·107, 1·106, 1·105, 1·104, 1·103, 1·102, and 1·101 of microbial cells per animal of 0.3 ml suspension in volume; the 10th group of animals were given saline solution; the 11th served as a biological control group. In determining the minimal doses of gamma rays, we conducted experimental tests on 36 rabbits, which have been exposed to external γ-radiation in the “PUMA” system with a 137Cs radiation source of the exposure dose of 5.38 R/min at doses 2.0, 4.0, 6.0, 8.0, 10, and 12 Gy. To specify the optimal model of radiation-pasteurellosis lesion, we used the rabbits subjected to a combined radiation-biology effect using minimal doses of gamma rays and pasteurellosis agent, leading to a lethal effect during their complex action. The researches revealed that 50% of the death of rabbits infected with pasteurellosis occurs using Pasteurella at a dose of 3.7·104 microbial cells per kilogram (LD50 = 3.7∙104 m.c./kg), and 50% of radiation death in rabbits occurs when irradiated their gamma rays at a dose of 8.0 Gy (LD50 = 8.0 Gy). The combined effect of nonlethal doses of the studied agents in the indicated doses on rabbits led to the aggravation of the course of radiation and pasteurellosis infection, causing the death of animals from combined radiation-pasteurellosis pathology. The model combined radiation-pasteurellosis disease ran its course rapidly, and the animals died 3 to 6 days after the onset. The autopsy of the animals that died from acute radiation-pasteurellosis pathogen had found swelling of the subcutaneous tissue in the pharynx and intermaxillary space of the neck, hyperemia, lymphoid nodular hyperplasia, numerous hemorrhages on the serous and mucous membranes and in the tissues of the parenchymal organs, serous or serous-fibrinous exudate, and in the chest and abdominal regions, pulmonary edema. The research stated that gamma radiation of rabbits at a dose of 8.0 Gy conducted before exposure with Pasteurella at LD50 (3.7·104 m.c./kg) declined the course of the pasteurellosis process, facilitated its generalization, and fastened the death of animals. Combined radiation-pasteurellosis infection ran its course rapidly, and the animals died within 3 to 6 days after the onset of the disease. The autopsy showed the pathologicoanatomic factors of the acute pasteurellosis: swelling of the subcutaneous tissue, purulent-catarrhal bronchopneumonitis, and pulmonary edema.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.