Identifying previously unknown sites is a fundamental goal of the archaeological inquiry. In this article, after reporting the results of our work at Tel ‘Eton (Israel), we propose a new method that can increase the effectiveness of surveys. As part of a study of site formation processes, molehills (mole-rat back-dirt hills) were systematically sifted at Tel ‘Eton and its surroundings. It was apparent that the number and size of sherds in molehills on the mound greatly exceeded those found in its surroundings. The incidental identification of many sherds in molehills northwest of the mound, therefore, led us to suspect that this area was settled. This was tested by transecting the area. The finds, along with discoveries in the wadis cutting the plain, support this suggestion and allowed us to detect the lower city’s boundary. An examination of the site’s environments, moreover, enabled us to identify additional anomalies, like the co-occurrence of concentrations of sherds, red-soiled molehills, and slags, which might indicate an extra-mural workshop. Consequently, we suggest that a systematic examination of rodents’ back-dirt mounds can be an effective method—faster, cheaper, and more efficient than pedestrian surveys or shovel tests—of discovering unknown sites even in regions with good visibility.
ABSTRACT. The "governor's residency" at Tel 'Eton was destroyed in the late 8th century BCE in an Assyrian military campaign. While the numerous finds enable a detailed reconstruction of life on the eve of the destruction, this elite house was cleaned continuously, and since no floor raisings were identified, little was known of the building's period of use. Radiocarbon ( 14 C) samples taken from within a foundation deposit and from the floor make-up, however, indicate that the earliest phase of the residency was built in the late 11th-10th century BCE. This has bearings on the date in which social complexity evolved in Judah, on the debate regarding the historicity of the kingdom of David and Solomon, and it also provides the earliest date for the use of ashlar stones in Judah. Finally, the long life of the "governor's residency" exemplifies a little addressed phenomenon-the old-house effect-in which buildings and settlements existed for a few centuries, but only left significant remains from their last phase. The earlier phases are hardly represented in the finds, barely studied, and rarely published. We suggest that the old-house effect influences archaeological interpretations worldwide, and is also responsible for recent attempts to down-date social complexity in Judah.
Over the last century, crosstalk between archaeologists and botanists had focused on the identification of plants remnants, such as charcoal or seeds found in archaeological inventory. Here we demonstrate how botany can play a fundamental role in identifying ancient landscape by using current vegetation. Identifying the loci of ancient human activity is the initial step of any archaeological study, enabling analyses such as settlement patterns, economic structures and land use, as well as devising excavations strategy. While mounds (tells) are standing out of their surroundings and are easily detected, other sites are hidden underground, and require various methods for detection. The cost and intensity of these methods vary, but most are time-consuming, require a team of specialists, and show somewhat limited success, leading archaeologists to seek new methods of site detection. Here, we describe a study of vegetational parameters at Tel ‘Eton (Israel), located in a semi-arid climatic region, where vegetation is mostly herbaceous, mainly comprised of annual plants. We compared above ground biomass, species richness and species composition among four plots in Tel ‘Eton and its surrounding. Two plots were located where ancient settlement found in a previous study, one on top of the mound and one below, where a “lower city” was previously identified. The other two plots were located in similar topographies, namely one on a hill and the other below, but in never-settled areas. While above ground biomass was similar between settled and not-settled plots, species richness was significantly higher in settled plots (40 and 32 species in settled plots, versus 28 and 9 species in non-settled) and species composition was significantly different between them. Our results demonstrate that loci of buried remains of human activity significantly differ from non-settled ones, hence providing the basis for an above ground indirect method of identification of human remains. We propose that floristic sampling of ground-level vegetation may allow archaeologists to identify buried sites, and hence increase the validity of various types of archaeological analyses, such as creating maps of settlements, which rely on the identification of sites without excavating them.
The eighth century BCE city at Tel 'Eton (Israel) was destroyed by the Assyrian army, probably during Sennacherib's campaign of 701. Building 101, sealed within the heavy conflagration caused by this destruction, was uncovered almost in its entirety on the top of the mound. From the beginning, it was apparent that the structure had two major building phases, and while its initial construction was of high quality, later additions were much inferior. Analyses of mudbrick walls for firing temperatures, texture, carbonate content, color, and dimensions approved the observation regarding the differences between the two phases, but consistently pointed out that one wall, initially attributed to the first phase, was analytically different, comprising an intermediate phase.This conclusion not only altered our understanding of the building construction, adding heretofore unknown building phase, but also gave us insights into the pre-planning of Building 101, indicating that some rooms had originally two doorways. Such a configuration allowed easy subdivision of spaces according to needs, without harming the overall structural stability. Differences in inner division of similar Iron Age houses were identified in the past and were attributed to differences in the life cycles of families. The evidence from Tel 'Eton suggests that such future changes were taken into considerations when the structures were built.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.