The endoplasmic reticulum quality control (ERQC) system, including endoplasmic reticulum-associated degradation (ERAD), the unfolded protein response (UPR), and autophagy, presides over cellular protein secretion and maintains proteostasis in mammalian cells. As part of the immune system, a variety of proteins are synthesized and assembled correctly for the development, activation, and differentiation of immune cells, such as dendritic cells (DCs), macrophages, myeloid-derived-suppressor cells (MDSCs), B lymphocytes, T lymphocytes, and natural killer (NK) cells. In this review, we emphasize the role of the ERQC in these immune cells, and also discuss how the imbalance of ER homeostasis affects the immune response, thereby suggesting new therapeutic targets for immunotherapy.
The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively.How to cite this article: Tao Z, Jiang Y, Xia S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease.
Background
ACAN heterozygous mutations can cause short stature in patients with or without advanced bone age and have recently attracted researchers' attention. Growth hormone can be used to treat short stature induced by ACAN mutations; however, few studies have focused on the underlying mechanism of this treatment.
Methods
Four patients with new mutations were reported based on clinical data and genetic tests. We investigated the expression and Gene Ontology biological process enrichment of ACAN and GH pathways based on GTEx databases through bioinformatics analyses. The effect of ACAN on the growth hormone response evaluated in ATDC5 cells with a growth hormone stimulation test.
Results
Four mutations were reported in this study: c.619C > A, c.1967A > G, c.1888G > A, and c.1308_1309del. All patients' heights were under −2.5 SD, with one had advanced bone age, and two had GH deficiency.
Two individuals received growth hormone therapy acquired variable levels of height SD score improvement. ACAN and the GH pathway were strongly associated; ACAN does not affect GHR but regulates the response to GH. Downregulating ACAN inhibited ATDC5 cell proliferation induced by GH.
Conclusion
ACAN is associated with the GH pathway, revealing the potential mechanism underlying GH‐targeted treatment for ACAN mutation‐induced short stature. GH‐promoting therapies may increase patients' heights.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.