This article presents a non-AC-side voltage sensor control method applied to More Electric Aircraft rectifiers. The control strategy can operate properly over a wide range of frequencies. This strategy calculates the AC supply frequency through an instantaneous phase-locked loop and feeds it back to a dual low-pass filter. The reconstructed rectifier-side voltage is filtered using two low-pass filters with different scale factors. Then, the values of the two filter outputs are subtracted and the effect of the DC bias due to the initial value of the integration is eliminated. The subtracted value is amplitude-phase compensated to calculate the virtual flux value. The phase angle can then be calculated from the virtual flux value. This phase angle is used for the implementation of the voltage-oriented vector control and as an input to the instantaneous phase-locked loop. Simulation and experimental results show that the use of dual low-pass filters under different frequency conditions improves the speed and accuracy of virtual flux estimation and eliminates DC-side bias errors.
In order to solve the problem that the three-phase current of the interior permanent magnet synchronous motor (IPMSM) contains the 11th and 13th current harmonics, a multiple synchronous rotating frame transformation (MSRFT)-based current harmonic suppression method is established. Firstly, the influencing factors of current harmonics in IPMSM vector control are analyzed, and the influence mechanism of the inverter’s dead-time effect and the permanent magnet flux linkage harmonics on the current harmonics is described. Secondly, a simple current harmonic extraction method is proposed by optimizing the traditional current harmonic extraction method based on MSRFTs. The proposed method achieves the accurate extraction of the current harmonic components. Thirdly, a harmonic voltage generation method is established and is combined with the proposed current harmonic extraction method to form a current harmonic suppression strategy. Finally, the feasibility and effectiveness of the proposed method are verified via MATLAB/Simulink simulations and experiments. The simulation and experimental results show that the proposed current harmonic extraction method can extract the current harmonic components accurately, and the proposed current harmonic suppression strategy can suppress the 11th and 13th current harmonics effectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.