The Wnt/β-catenin signaling pathway, commonly hyperactivated in pancreatic cancer, has been reported to play an important role in the maintenance of stemness of cancer stem cells (CSCs), which is closely related to the progression of pancreatic cancer. Therefore, exploring the regulatory mechanism in Wnt/β-catenin signaling may provide valuable clinical targets for cancer therapy. In the current study, we demonstrated that upregulation of miR-744 in pancreatic cancer promoted Wnt/β-catenin signaling by directly targeting secreted frizzled-related protein 1 (SFRP1), glycogen synthase kinase 3β (GSK3β), and transducin-like enhancer of split 3 (TLE3), important negative modulators of Wnt/β-catenin signaling. Expression of miR-744 was markedly upregulated in pancreatic cancer and positively correlated with poor patient survival. Furthermore, we found that overexpressing miR-744 enhanced, while inhibiting miR-744 reduced, the stem cell-like phenotype of pancreatic cancer cells in vitro. Importantly, in vivo model of human-derived pancreatic xenografts showed that miR-744 upregulation enhanced the tumorigenicity of pancreatic cancer cells. These findings suggest that miR-744 plays a vital role in promoting the stem cell-like phenotype of pancreatic cancer cells, and may represent a novel prognostic biomarker and therapeutic target.
The aim of this study was to investigate the effect of microRNA-20a on pancreatic carcinoma cell proliferation and invasion and to find a new effective treatment strategy for pancreatic carcinoma. MicroRNA-20a expression was determined in 10 matched normal pancreatic tissues and pancreatic carcinoma by in situ hybridization. Quantitative real-time RT-PCR was used to evaluate the expression of microRNA-20a in two pancreatic carcinoma cell lines (BxPC-3 and Panc-1) and immortal human pancreatic duct epithelial cell line H6C7. Proliferation and invasion capacity were analyzed for the cells with lentivirus-mediated overexpression of microRNA-20a both in vitro and in vivo. In addition, the regulation of signal transducer and activator of transcription proteins 3 (Stat3) by microRNA-20a was determined to elucidate the underlying mechanisms. The pancreatic cancer cell lines (Panc-1 and BxPC-3) stably overexpressing microRNA-20a showed reduced proliferation and invasion capacity in vitro and in vivo, compared with parental cells or cells transfected with a control vector. Furthermore, we found that microRNA-20a negatively regulated Stat3 protein expression in a dose-dependent manner without changing the Stat3 mRNA level and decreased the activity of a luciferase reporter construct containing the Stat3 3'-untranslated region. These results show that microRNA-20a regulates Stat3 at the post-transcriptional level, resulting in inhibition of cell proliferation and invasion of pancreatic carcinoma. It may open a new perspective for the development of effective gene therapy for pancreatic carcinoma.
The FOXO signaling pathway has been reported to have an important role in human cancer. Expression of miR-629 was markedly upregulated in pancreatic cancer and negatively correlated with FOXO3. Therefore, exploring the regulatory mechanism of miR-629 and FOXO3 signaling may provide valuable clinical targets for pancreatic cancer therapy. In the current study, we found that overexpressing and inhibiting miR-629, respectively, enhanced and reduced the cell proliferation and metastasis of pancreatic cancer cells in vitro and in vivo compared with parental cells or cells transfected with a control vector. Furthermore, we found that miR-629 negatively regulated FOXO3 protein expression and decreased the activity of a luciferase reporter construct containing the FOXO3 3′-untranslated region. These results show that miR-629 regulates FOXO3 at the posttranscriptional level, resulting in enhanced cell proliferation and invasion of pancreatic carcinoma. Furthermore, we found that overexpressing miR-629 enhanced, while inhibiting miR-629 reduced, the stem cell-like phenotype of pancreatic cancer cells in vitro. A functional polymorphism at miR-629-binding site in the 3′-UTR of FOXO3 gene confers a decreased risk of progression in pancreatic carcinoma. Furthermore, these findings suggest that miR-629 has a vital role in promoting the development of pancreatic cancer and may represent a novel prognostic biomarker and therapeutic target.
These results prove that miR-17-5p negatively regulates Bim at the posttranscriptional level. We suggest that miR-17-5p inhibitor gene therapy would be a novel approach to chemosensitization for human pancreatic cancer.
Survivin is known to be overexpressed in various human malignancies, including pancreatic cancer, and to cause resistance to radiation and chemotherapy, so the regulation of this molecule could be a new strategy for treating pancreatic cancer. In our study, a short interfering RNA (siRNA) plasmid expression vector against survivin was constructed and transfected into human pancreatic cancer cell lines of Panc-1 and BxPC3. The expression of survivin mRNA and protein among the stable transfected cells and the untransfected cells was detected by semi-quantitative reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot, respectively. Tumor cell growth in vitro was assessed by trypan blue exclusion. The cell cycle distribution and cell apoptosis were measured by flow cytometry. The cytotoxicity assay was measured by the MTT test. Our results showed that survivin siRNA treatment caused a specific and profound decrease of survivin mRNA and protein that was associated with decreased cell growth, spontaneous apoptosis, and a specific G0/G1 arrest. Furthermore, the suppression of survivin can enhance the chemosensitivity of pancreatic cancer cells to gemcitabine significantly. We suggest that the RNAi against survivin gene strategy would be a potential approach to chemosensitization therapy in human pancreatic cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.