The emergence of drug resistant bacteria is a tricky and confronted problem in modern medicine, and one of important reasons is the widespread of toxin-antitoxin (TA) systems in pathogenic bacteria. Edwardsiella piscicida (also known as E. tarda) is the leading pathogen threatening worldwide fresh and seawater aquaculture industries and has been considered as a model organism for studying intracellular and systemic infections. However, the role of type II TA systems are completely unknown in aquatic pathogenic bacteria. In this study, we identified and characterized a type II TA system, YefM-YoeB, of E. piscicida, where YefM is the antitoxin and YoeB is the toxin. yefM and yoeB are co-expressed in a bicistronic operon. When expressed in E. coli, YoeB cause bacterial growth arrest, which was restored by the addition of YefM. To investigate the biological role of the TA system, two markerless yoeB and yefM-yoeB in-frame mutant strains, TX01ΔyoeB and TX01ΔyefM-yoeB, were constructed, respectively. Compared to the wild strain TX01, TX01ΔyefM-yoeB exhibited markedly reduced resistance against oxidative stress and antibiotic, and markedly reduced ability to form persistent bacteria. The deletion of yefM-yoeB enhanced the bacterial ability of high temperature tolerance, biofilm formation, and host serum resistance, which is the first study about the relationship between type II TA system and serum resistance. In vitro infection experiment showed that the inactivation of yefM-yoeB greatly enhanced bacterial capability of adhesion in host cells. Consistently, in vivo experiment suggested that the yefM-yoeB mutation had an obvious positive effect on bacteria dissemination of fish tissues and general virulence. Introduction of a trans-expressed yefM-yoeB restored the virulence of TX01ΔyefM-yoeB. These findings suggest that YefM-YoeB is involved in responding adverse circumstance and pathogenicity of E. piscicida. In addition, we found that YefM-YoeB negatively autoregulated the expression of yefM-yoeB and YefM could directly bind with own promoter. This study provides first insights into the biological activity of type II TA system YefM-YoeB in aquatic pathogenic bacteria and contributes to understand the pathogenesis of E. piscicida.
Edwardsiella piscicida is a severe fish pathogen. Haem utilization systems play an important role in bacterial adversity adaptation and pathogenicity. In this study, a speculative haem utilization protein, HutZ Ep , was characterized in E. piscicida. hutZ Ep is encoded with two other genes, hutW and hutX, in an operon that is similar to the haem utilization operon hutWXZ identified in V. cholerae. However, protein activity analysis showed that HutZ Ep is probably not related to hemin utilization. To explore the biological role of HutZ Ep , a markerless hutZ Ep in-frame mutant strain, TX01ΔhutZ, was constructed. Deletion of hutZ Ep did not significantly affect bacterial growth in normal medium, in iron-deficient conditions, or in the presence of haem but significantly retarded bacterial biofilm growth. The expression of known genes related to biofilm growth was not affected by hutZ Ep deletion, which indicated that HutZ Ep was probably a novel factor promoting biofilm formation in E. piscicida. Compared to the wild-type TX01, TX01ΔhutZ exhibited markedly compromised tolerance to acid stress and host serum stress. Pathogenicity analysis showed that inactivation of hutZ Ep significantly impaired the ability of E. piscicida to invade and reproduce in host cells and to infect host tissue. In contrast to TX01, TX01ΔhutZ was defective in blocking host macrophage activation. The expression of hutZ Ep was directly regulated by the ferric uptake regulator Fur. This study is the first functional characterization of HutZ in a fish pathogen, and these findings suggested that HutZ Ep is essential for E. piscicida biofilm formation and contributes to host infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.