Zero-valent iron nanoparticles (nZVI) synthesized in the presence of reduced sulfur compounds have been shown to degrade trichloroethene (TCE) at significantly higher rates. However, the applicability of sulfidation as a general means to enhance nZVI reactivity under different particle preparation conditions and the underlying cause for this enhancement effect are not well understood. In this study, the effects of sulfidation reagent, time point of sulfidation, and sulfur loading on the resultant particles were assessed through TCE degradation experiments. Up to 60-fold increase in TCE reaction rates was observed upon sulfidation treatment, with products being fully dechlorinated hydrocarbons. While the reactivity of these sulfur-treated nZVI (S-nZVI) was relatively unaffected by the sulfidation reagent (viz., sodium sulfide, dithionite, or thiosulfate) or the sequence of sulfidation relative to iron reduction, TCE reaction rates were found to depend strongly on sulfur to iron ratio. At a low sulfur loading, TCE degradation was accelerated with increasing sulfur dose. The rate constant reached a limiting value, however, as the sulfur to iron mole ratio was greater than 0.025. Different from previous propositions that iron sulfidation leads to more efficient TCE or tetrachloroethene (PCE) degradation by enabling depassivation of iron surface, affording catalytic pathways, or facilitating electron transfer, we show that the role of sulfur in nZVI lies essentially in its ability to poison hydrogen recombination, which drives surface reactions to favor reduction by atomic hydrogen. This implies that the reactivity of S-nZVI is contaminant-specific and is selective against the background reaction of water reduction. As the effect of sulfur manifests through surface processes, sulfidation represents a broadly applicable surface modification approach to modulate or increase the reactivity of nZVI for treating TCE and other related contaminants.
Burns are a common health problem worldwide and are highly susceptible to bacterial infections that are difficult to handle with ordinary wound dressings. Therefore, burn wound repair is extremely challenging in clinical practice. Herein, a series of self-healing hydrogels (QCS/OD/TOB/PPY@PDA) with good electrical conductivity and antioxidant activity were prepared on the basis of quaternized chitosan (QCS), oxidized dextran (OD), tobramycin (TOB), and polydopaminecoated polypyrrole nanowires (PPY@PDA NWs). These Schiff base crosslinks between the aminoglycoside antibiotic TOB and OD enable TOB to be slowly released and responsive to pH. Interestingly, the acidic substances during the bacteria growth process can induce the on-demand release of TOB, avoiding the abuse of antibiotics. The antibacterial results showed that the QCS/OD/TOB/PPY@PDA9 hydrogel could kill high concentrations of Pseudomonas aeruginosa (PA), Staphylococcus aureus, and Escherichia coli in a short time and showed a bactericidal effect for up to 11 days in an agar plate diffusion experiment, while showing good in vivo antibacterial activity. Excellent and long-lasting antibacterial properties make it suitable for severely infected wounds. Furthermore, the incorporation of PPY@PDA endowed the hydrogel with near-infrared (NIR) irradiation assisted bactericidal activity of drug-resistant bacteria, conductivity, and antioxidant activity. Most importantly, in the PA-infected burn wound model, the QCS/OD/TOB/PPY@PDA9 hydrogel more effectively controlled wound inflammation levels and promoted collagen deposition, vascular generation, and earlier wound closure compared to Tegaderm dressings. Therefore, the TOB smart release hydrogels with on-demand delivery are extremely advantageous for bacterial-infected burn wound healing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.