Abstract:In this paper, a scheme is presented for fusing a foot-mounted Inertial Measurement Unit (IMU) and a floor map to provide ubiquitous positioning in a number of settings, such as in a supermarket as a shopping guide, in a fire emergency service for navigation, or with a hospital patient to be tracked. First, several Zero-Velocity Detection (ZDET) algorithms are compared and discussed when used in the static detection of a pedestrian. By introducing information on the Zero Velocity of the pedestrian, fused with a magnetometer measurement, an improved Pedestrian Dead Reckoning (PDR) model is developed to constrain the accumulating errors associated with the PDR positioning. Second, a Correlation Matching Algorithm based on map projection (CMAP) is presented, and a zone division of a floor map is demonstrated for fusion of the PDR algorithm. Finally, in order to use the dynamic characteristics of a pedestrian's trajectory, the Adaptive Unscented Kalman Filter (A-UKF) is applied to tightly integrate the IMU, magnetometers and floor map for ubiquitous positioning. The results of a field experiment performed on the fourth floor of the
2639School of Environmental Science and Spatial Informatics (SESSI) building on the China University of Mining and Technology (CUMT) campus confirm that the proposed scheme can reliably achieve meter-level positioning.
This paper integrates UWB (ultra-wideband) and IMU (Inertial Measurement Unit) data to realize pedestrian positioning through a particle filter in a non-line-of-sight (NLOS) environment. After the acceleration and angular velocity are integrated by the ZUPT-based algorithm, the velocity and orientation of the feet are obtained, and then the velocity and orientation of the whole body are estimated by a virtual odometer method. This information will be adopted as the prior information for the particle filter, and the observation value of UWB will act as the basis for weight updating. According to experimental results, the prior information provided by an IMU can be used to restrain the observation error of UWB under an NLOS condition, and the positioning precision can be improved from the positioning error of 1.6 m obtained using the pure UWB-based algorithm to approximately 0.7 m. Moreover, with high computational efficiency, this algorithm can achieve real-time computing performance on ordinary embedded devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.