There has been a rapid expansion in the use of molecular magnets for both low- and ultra low-temperature cooling applications in recent years, and here we review the chemical variation and magnetothermal properties of reported molecular coolers, structuring the review by structural dimensions, metal-ions involved and ligands employed. This review provides an overview of the developments in designing better low-temperature magnetic refrigerants, and includes description of new 3D-materials that, in some ways, out-perform traditional magnetic coolants. Thus, this review should serve as both a tutorial for many newcomers and a summary of progress for researchers who are active in the field.
High-Nuclearity 3d-4f Clusters as Enhanced Magnetic Coolers and MolecularMagnets. -The Co II /Co III (9:1) mixed compounds (III) and the Ni II compounds (V) are isostructural and crystallize in the monoclinic space group P21/m with Z = 2 (single crystal XRD). (IIIa) and (Va) exhibit the largest magnetocaloric effects among any known 3d-4f complexes, which is significant for their potential applications in magnetic cooling technology in the ultralow temperature range. Compounds (IIIb) and (Vb) display slow relaxation of the magnetization.
Understanding quantum tunnelling of the magnetisation (QTM) in single-molecule magnets (SMMs) is crucial for improving performance and achieving molecule-based information storage above liquid nitrogen temperatures. Here, through a field- and temperature-dependent study of the magnetisation dynamics of [Dy(tBuO)Cl(THF)5][BPh4]·2THF, we elucidate the different relaxation processes: field-independent Orbach and Raman mechanisms dominate at high temperatures, a single-phonon direct process dominates at low temperatures and fields >1 kOe, and a field- and temperature-dependent QTM process operates near zero field. Accounting for the exponential temperature dependence of the phonon collision rate in the QTM process, we model the magnetisation dynamics over 11 orders of magnitude and find a QTM tunnelling gap on the order of 10−4 to 10−5 cm−1. We show that removal of Dy nuclear spins does not suppress QTM, and argue that while internal dipolar fields and hyperfine coupling support QTM, it is the dynamic crystal field that drives efficient QTM.
The synthesis, structures, and magnetic properties of six families of cobalt-lanthanide mixed-metal phosphonate complexes are reported in this Article. These six families can be divided into two structural types: grids, where the metal centers lie in a single plane, and cages. The grids include [4 × 3] {Co(8)Ln(4)}, [3 × 3] {Co(4)Ln(6)}, and [2 × 2] {Co(4)Ln(2)} families and a [4 × 4] {Co(8)Ln(8)} family where the central 2 × 2 square is rotated with respect to the external square. The cages include {Co(6)Ln(8)} and {Co(8)Ln(2)} families. Magnetic studies have been performed for these compounds, and for each family, the maximum magnetocaloric effect (MCE) has been observed for the Ln = Gd derivative, with a smaller MCE for the compounds containing magnetically anisotropic 4f-ions. The resulting entropy changes of the gadolinium derivatives are (for 3 K and 7 T) 11.8 J kg(-1) K(-1) for {Co(8)Gd(2)}; 20.0 J kg(-1) K(-1) for {Co(4)Gd(2)}; 21.1 J kg(-1) K(-1) for {Co(8)Gd(4)}; 21.4 J kg(-1) K(-1) for {Co(8)Gd(8)}; 23.6 J kg(-1) K(-1) for {Co(4)Gd(6)}; and 28.6 J kg(-1) K(-1) for {Co(6)Gd(8)}, from which we can see these values are proportional to the percentage of the gadolinium in the core.
Although the development of single‐molecule magnets (SMMs) is rapid, there are only two families of high energy barrier (Ueff) dysprosium(III) SMMs known so far: the cyclopentadienyl (Cp) family with a sandwich structure and the pentagonal‐bipyramidal (PB) family with D5h symmetry. These high‐barrier SMMs, which usually possess Ueff>500 cm−1 allow the separate study of the four magnetic relaxation paths, namely, direct, quantum tunnelling, Raman and Orbach processes, in detail. Whereas the first family is chemically more challenging to modify the Cp rings, it is shown herein that the latter family, with the common formulae [DyX1X2(Leq)5]+, such as X1/X2=−OCMe3, −OSiMe3, −OPh, Cl− or Br−; Leq=THF/pyridine/4‐methylpyridine, can be readily fine‐tuned with a range of axial and equatorial ligands by simple substitution reactions. This allows unambiguous confirmation that the Ueff mainly depends on the identity of X1 and X2, rather than on Leq. More importantly, the fitted parameters are barrier dependent. If X1 is an O donor and X2 is a halide, 500
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.