Abstract. In order to better understand the molecular composition and sources of organic aerosols in Tianjin, a coastal megacity in North China, ambient fine aerosol (PM2.5) samples were collected on a day/night basis from November to December 2016 and from May to June 2017. The organic molecular composition of PM2.5 components, including aliphatic lipids (n-alkanes, fatty acids, and fatty alcohols), sugar compounds, and photooxidation products from isoprene, monoterpene, β-caryophyllene, naphthalene, and toluene, was analysed using gas chromatography–mass spectrometry. Fatty acids, fatty alcohols, and saccharides were identified as the most abundant organic compound classes among all of the tracers detected in this study during both seasons. High concentrations of most organics at night in winter may be attributed to intensive residential activities such as house heating as well as the low nocturnal boundary layer height. Based on tracer methods, the contributions of the sum of primary and secondary organic carbon (POC and SOC respectively) to aerosol organic carbon (OC) were 24.8 % (daytime) and 27.6 % (night-time) in winter and 38.9 % (daytime) and 32.5 % (night-time) in summer. In detail, POC derived from fungal spores, plant debris, and biomass burning accounted for 2.78 %–31.6 % (12.4 %; please note that values displayed in parentheses in the following are average values) of OC during the daytime and 4.72 %–45.9 % (16.3 %) at night in winter, and 1.28 %–9.89 % (5.24 %) during the daytime and 2.08 %–47.2 % (10.6 %) at night in summer. Biomass-burning-derived OC was the predominant source of POC in this study, especially at night (16.0±6.88 % in winter and 9.62±8.73 % in summer). Biogenic SOC from isoprene, α-∕β-pinene, and β-caryophyllene exhibited obvious seasonal and diurnal patterns, contributing 2.23±1.27 % (2.30±1.35 % during the daytime and 2.18±1.19 % at night) and 8.60±4.02 % (8.98±3.67 % and 8.21±4.39 %) to OC in winter and summer respectively. Isoprene and α-∕β-pinene SOC were obviously elevated in summer, especially during the daytime, mainly due to strong photooxidation. Anthropogenic SOC from toluene and naphthalene oxidation showed higher contributions to OC in summer (21.0±18.5 %) than in winter (9.58±3.68 %). In summer, toluene SOC was the dominant contributor to aerosol OC, and biomass burning OC also accounted for a high contribution to OC, especially at night-time; this indicates that land/sea breezes also play an important role in the aerosol chemistry of the coastal city of Tianjin in North China.
Abstract. Brown carbon (BrC) aerosols exert vital impacts on climate change and atmospheric photochemistry due to their light absorption in the wavelength range from near-ultraviolet (UV) to visible light. However, the optical properties and formation mechanisms of ambient BrC remain poorly understood, limiting the estimation of their radiative forcing. In the present study, fine particles (PM2.5) were collected during 2016–2017 on a day/night basis over urban Tianjin, a megacity in northern China. Light absorption and fluorescence properties of water extracts of PM2.5 were investigated to obtain seasonal and diurnal patterns of atmospheric water-soluble BrC. There were obvious seasonal, but no evident diurnal, variations in the light absorption properties of BrC. In winter, BrC showed much stronger light-absorbing ability, with a mass absorption efficiency at 365 nm (MAE365) in winter (1.54±0.33 m2 gC−1) that was 1.8 times larger than MAE365 in summer (0.84±0.22 m2 gC−1). Direct radiative effects by BrC absorption relative to black carbon in the UV range were 54.3±16.9 % and 44.6±13.9 % in winter and summer, respectively. In addition, five fluorescent components in BrC, including three humic-like fluorophores and two protein-like fluorophores were identified with excitation–emission matrix fluorescence spectrometry and parallel factor (PARAFAC) analysis. The less oxygenated components contributed more to winter and nighttime samples, while more oxygenated components increased in summer and daytime samples. The higher humification index (HIX), together with lower biological index (BIX) and fluorescence index (FI), suggests that the chemical compositions of BrC were associated with a high aromaticity degree in summer and daytime due to photobleaching. Fluorescent properties indicate that wintertime BrC were predominantly affected by primary emissions and fresh secondary organic aerosol (SOA), while summer ones were more influenced by aging processes. Results of source apportionments using organic molecular compositions of the same set of aerosols reveal that fossil fuel combustion and aging processes, primary bioaerosol emission, biomass burning, and biogenic and anthropogenic SOA formation were the main sources of BrC. Biomass burning contributed much more to BrC in winter and at nighttime, while biogenic SOA contributed more in summer and during the daytime. In particular, our study highlights that primary bioaerosol emission is an important source of BrC in urban Tianjin in summer.
To characterize secondary organic aerosols (SOA) over the Tianjin region, we studied the SOA tracers derived from isoprene, α/β-pinene, β-caryophyllene, and aromatics in PM 2.5 collected at an urban site and a background site over Tianjin, North China during summer to autumn 2018. Concentrations of total isoprene SOA tracers were twice those of α/β-pinene in summer, while they were the opposite in autumn, followed by β-caryophyllinic acid and 2,3-dihydroxy-4oxopentanoic acid (2,3-DHOPA), the only tracers derived from β-caryophyllene and toluene, respectively. The isoprene and α/ β-pinene SOA tracers were abundant in summer, whereas βcaryophylinic acid and 2,3-DHOPA dominated in autumn. Temporal variations and linear relations of SOA tracers with ambient temperature and molecular markers (levoglucosan and hopanes) together with the air mass trajectories implied that the SOA derived from terrestrial vegetation and marine biota and biomass burning was high in summer and autumn, respectively, while that derived from fossil fuel combustion and its processing during long-range atmospheric transport were significant in both seasons. The estimated SOA derived from aromatics was found to be most abundant, followed by that from sesquiterpenes, monoterpenes, and isoprene, respectively. The contribution of total SOC to OC and WSOC varied between 4.16% and 23.7% and 6.28−30.7%, respectively, in which biogenic SOC accounted for about 50% in summer and 40% in autumn, indicating significant loading of SOA over Tianjin, North China.
Abstract. Brown carbon (BrC) aerosols exert vital impacts on climate change and atmospheric photochemistry due to their light absorption in the wavelength range from near-ultraviolet (UV) to visible light. However, the optical properties and formation mechanisms of ambient BrC remain poorly understood, limiting the estimation of their radiative forcing. In the present study, fine aerosols (PM2.5) were collected during 2016–2017 on a day/night basis over urban Tianjin, a megacity in North China, to obtain seasonal and diurnal patterns of atmospheric water-soluble BrC. There were obvious seasonal but no evident diurnal variations in light absorption properties of BrC. In winter, BrC showed much stronger light absorbing ability since mass absorption efficiency at 365 nm (MAE365) (1.54 ± 0.33 m2 g−1), which was 1.8 times larger than that (0.84 ± 0.22 m2 g−1) in summer. Direct radiative effects by BrC absorption relative to black carbon in the UV range were 54.3 ± 16.9 % and 44.6 ± 13.9 %, respectively. In addition, five fluorescent components in BrC, including three humic-like fluorophores and two protein-like fluorophores were identified with excitation-emission matrix fluorescence spectrometry and parallel factor (PARAFAC) analysis. The lowly-oxygenated components contributed more to winter and nighttime samples, while more-oxygenated components increased in summer and daytime samples. The higher humification index (HIX) together with lower biological index (BIX) and fluorescence index (FI) suggest that the chemical compositions of BrC were associated with a high aromaticity degree in summer and daytime due to photobleaching. Fluorescent properties indicate that wintertime BrC were predominantly affected by primary emissions and fresh secondary organic aerosol (SOA), while summer ones were more influenced by aging processes. Results of source apportionments using organic molecular compositions of the same set of aerosols reveal that fossil fuel combustion and aging processes, primary bioaerosol emission, biomass burning, and biogenic and anthropogenic SOA formation were the main sources of BrC. Biomass burning contributed much larger to BrC in winter and at nighttime, while biogenic SOA contributed more in summer and at daytime. Especially, our study highlights that primary bioaerosol emission is an important source of BrC in urban Tianjin in summer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.