Gas diffusion plays a key role in CO 2-enhanced recovery of coal bed methane (ECBM), where more than one types of gases coexist and multicomponent gas diffusion occurs. Such process is now usually described by non-coupled two-component gas diffusion equations which exclude the interactions between gases. Self-diffusion and mutual diffusion of CO 2-CH 4 mixture are investigated through molecular simulation for the first time. The self-diffusion coefficients of CO 2 and CH 4 decrease with gas concentration but increase with temperature. The mutual diffusion coefficients of binary gas mixture of CO 2-CH 4 in coal are computed through Maxwell-Stefan diffusion theory. A 2D diffusivity matrix |D| (with diagonal element D i and non-diagonal element D ij) is obtained to depict the mutual diffusion of the gas mixture. It is found that CO 2 (CH 4) diffusion is coupled with CH 4 (CO 2). The diffusion coupling strength of CO 2 and CH 4 decreases with increasing gas
Storing CO2 in underground saline aquifers is an important way to reduce CO2 emission in atmosphere, where gas/fluid diffusion in clay plays a key role in CO2 leakage and migration. Various diffusivities, self-diffusivity, Maxwell–Stefan (M–S) diffusivity and Fick diffusivity, in clay interlayer are investigated by molecular dynamics (MD). Self-diffusivity varies with CO2 concentration, and reaches the maximum value at 2 molecules/unit-cell. High fluid concentration leads to clay swelling, thereby increasing self-diffusivity. However, the fractional free volume of clay explains the trend of CO2 self-diffusivity, which does not decrease with CO2 concentration monotonously but reaches the maximum when CO2 concentration reaches 2. Displacement distribution of CO2 molecules is analysed to explore the microscopic diffusion mechanism, which is characterised by logarithmic normal distribution. The mean value of such distribution further explains the self-diffusivity dependence on CO2 concentration. M–S and Fick diffusivities of CO2 are calculated by MD for the first time, both of which increase with increasing CO2 and H2O concentration and temperature. Based on self-diffusivity and M–S diffusivity, a quantity representing the coupling strength between CO2 molecules is presented; it increases firstly with CO2 concentration but begins to decrease when CO2 concentration is beyond 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.