Multicriteria group decision making (MCGDM) with different evaluation criterion sets is a special kind of MCGDM problem, where criterion sets considered by multiple experts may be different, while research concerning this issue is still relatively scarce. The objective of this paper is to develop a method for MCGDM with different evaluation criterion sets. In the method, according to different criterion sets, several criterion subsets are first constructed, where each criterion subset includes the criteria concerned by the same group of experts. Then, with respect to each criterion subset, a ranking of alternatives is determined by normalizing the decision matrix and calculating the ranking value of each alternative with respect to the criterion subset. Next, according to the ranking of alternatives with respect to each criterion subset, a ranking possibility matrix of alternatives with respect to the criterion subset is constructed. Further, the weight of each criterion subset is determined according to weights of the experts and weights of the criteria in the criterion subset. Moreover, an overall ranking possibility matrix is constructed by aggregating the ranking possibility matrices and weights concerning different criterion subsets, and the final ranking result of alternatives is determined by solving a linear assignment model, where the elements in the overall ranking possibility matrix are regarded as the benefits on assigning each alternative into different ranking positions. Finally, a numerical example is given to illustrate the use of the proposed method.
This paper examines the service mode selection strategy of a ride‐hailing platform and analyzes the impact of the strategy on consumers and drivers. The platform has three service modes to select from, including Mode L (only low‐quality services), Mode H (only high‐quality services), and Mode HL (high‐ and low‐quality services). We find that each service mode does not affect the price and the wage of the low‐quality service but affects those of the high‐quality service. Additionally, the platform cannot optimally select Mode L. The platform is better off if the car quality difference between high‐ and low‐quality services (CQD) is small and is worse off otherwise, under Mode HL. Counter‐intuitively, it is conditional for Mode HL to bring the highest surpluses to both consumers and drivers, and the conditions are related to CQD, social status utility of consumers and cost ratio between the drivers providing the two types of services.
The determination of a treatment plan for a target patient with tumor is a difficult problem due to the existence of heterogeneity in patients’ responses, incomplete information about tumor states, and asymmetric knowledge between doctors and patients, and so on. In this paper, a method for quantitative risk analysis of treatment plans for patients with tumor is proposed. To reduce the impacts of the heterogeneity in patients’ responses on analysis results, the method conducts risk analysis by mining historical similar patients from Electronic Health Records (EHRs) in multiple hospitals using federated learning (FL). For this, the Recursive Feature Elimination based on the Support Vector Machine (SVM) and Deep Learning Important FeaTures (DeepLIFT) are extended into the FL framework to select key features and determine key feature weights for identifying historical similar patients. Then, in the database of each collaborative hospital, the similarities between the target patient and all historical patients are calculated, and the historical similar patients are determined. According to the statistics of tumor states and treatment outcomes of historical similar patients in all collaborative hospitals, the related data (including the probabilities of different tumor states and possible outcomes of different treatment plans) for risk analysis of the alternative treatment plans can be obtained, which can eliminate the asymmetric knowledge between doctors and patients. The related data are valuable for the doctor and patient to make their decisions. Experimental studies have been conducted to verify the feasibility and effectiveness of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.