Semiconductor vertical-cavity surface-emitting lasers (VCSELs) with wavelengths from 491.8 to 565.7 nm, covering most of the ‘green gap’, are demonstrated. For these lasers, the same quantum dot (QD) active region was used, whereas the wavelength was controlled by adjusting the cavity length, which is difficult for edge-emitting lasers. Compared with reports in the literature for green VCSELs, our lasers have set a few world records for the lowest threshold, longest wavelength and continuous-wave (CW) lasing at room temperature. The nanoscale QDs contribute dominantly to the low threshold. The emitting wavelength depends on the electron–photon interaction or the coupling between the active layer and the optical field, which is modulated by the cavity length. The green VCSELs exhibit a low-thermal resistance of 915 kW−1, which benefits the CW lasing. Such VCSELs are important for small-size, low power consumption full-color displays and projectors.
Thermal characteristics of GaN-based vertical cavity surface emitting lasers (VCSELs) with three typical structures were investigated both theoretically and experimentally. The simulation results based on a steady state quasi three-dimensional cylindrical model show that the thermal resistance (R th ) is affected by cavity length, mesa size, as well as the bottom distributed Bragg reflector (DBR) size, and the detail further depends on different structures. Among different devices, GaN VCSEL with a hybrid cavity formed by one nitride bottom DBR and another dielectric top DBR is featured with lower R th , which is meanwhile affected strongly by the materials of the epitaxial bottom DBR. The main issues affecting the thermal dissipation in VCSELs with double dielectric DBRs are the bottom dielectric DBR and the dielectric currentconfinement layer. To validate the simulation results, GaN-based VCSEL bonded on a copper plate was fabricated. R th of this device was measured and the results agreed well with the simulation. This work provides a better understanding of the thermal characteristics of GaNbased VCSELs and is useful in optimizing the structure design and improving the device performance.
Low threshold continuous-wave (CW) lasing of current injected InGaN quantum dot (QD) vertical-cavity surface-emitting lasers (VCSELs) was achieved at room temperature. The VCSEL was fabricated by metal bonding technique on a copper substrate to improve the heat dissipation ability of the device. For the first time, lasing was obtained at yellow-green wavelength of 560.4 nm with a low threshold of 0.61 mA, corresponding to a current density of 0.78 kA/cm2. A high degree of polarization of 94% were measured. Despite the operation in the range of "green gap" of GaN-based devices, single longitudinal mode laser emission was clearly achieved due to the high quality of active region based on InGaN QDs and the excellent thermal design of the VCSELs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.