Magneto-rheological mount is one of the most effective vibration isolation devices for the vibration isolation system of vehicle powertrain. In this article, a flow type of magneto-rheological mount was proposed to control the vibration and the torque excitation of the engine when vehicle was in start/stop mode. A mathematical model for the flow type of magneto-rheological mount was formulated with consideration of the influence of current on magneto-rheological fluid viscosity and the relationship between liquid resistance effect and flow rate in damping gap. Then, a co-simulation optimal platform was developed by the Isight and the ANSYS, and the non-dominated sorting genetic algorithm II was used to optimize magnetic circuit. Subsequently, two prototypes of magneto-rheological mounts were manufactured according to the initial design and the optimal design model, and the dynamic performance test of magneto-rheological mount monomer and the vibration isolation performance test of the whole vehicle under start/stop mode were carried out, respectively. The experimental results showed that the controllability and the vibration isolation performance of the optimal design magneto-rheological mount were significantly improved compared with the initial design.
We employ self-consistent-field and density-functional theories to simulate the phase behaviors of diblock copolymer-nanoparticle mixtures confined in a two-dimensional circular pore. By varying the block ratio, the size of the pore, and the particle concentration, rich phase structures are discovered. It is shown that the structural frustration, the loss of conformational entropy of the polymer chains under confinement, the curvature of the pore, and the steric packing effect of the particles play important roles in determining the morphologies of the nanocomposites under circular confinement. It is found that the increase in the particle concentration can promote the transformation of concentric lamellas to the cylindrical domains. Our results suggest effective ways to stabilize the phase orderings of diblock copolymer-nanoparticle mixtures under two-dimensional circular confinement.
In order to relieve saturation of magnetic flux density in magnetic circuit, the flow mode magnetorheological mount with tapered channel is designed. The influence of geometrical parameters of the damping channel on magnetic flux density and pressure drop is analysed. The key parameters have strong nonlinear relationship with magnetic field strength and pressure drop. Then, the parametric modelling of magnetic circuit structure was carried out using ANSYS software as the analysis system. The mount optimisation analysis model was built based on ISIGHT software. The optimisation results showed that the designed magnetorheological mount improved the saturation point of magnetic flux density of the damping channel, and the resulting pressure drop had good controllability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.