Bas-relief is characterized by its unique presentation of intrinsic shape properties and/or detailed appearance using materials raised up in different degrees above a background. However, many bas-relief modeling methods could not manipulate scene details well. We propose a simple and effective solution for two kinds of bas-relief modeling (i.e., structure-preserving and detail-preserving), which is different from the prior tone mapping alike methods. Our idea originates from an observation on typical 3D models which are decomposed into a piecewise smooth base layer and a detail layer in normal field. Proper manipulation of the two layers contributes to both structure-preserving and detail-preserving bas-relief modeling. We solve the modeling problem in a discrete geometry processing setup that uses normal-based mesh processing as a theoretical foundation. Specifically, using the two-step mesh smoothing mechanism as a bridge, we transfer the bas-relief modeling problem into a discrete space, and solve it in a least-squares manner. Experiments and comparisons to other methods show that (i) geometry details are better preserved in the scenario with high compression ratios, and (ii) structures are clearly preserved without shape distortion and interference from details.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.