Population activity in the cortex is poorly understood. In this report we use voltage-sensitive dye imaging to examine the spatiotemporal patterns of a 7-10 Hz oscillation in neocortical slices from rat somatosensory areas. This oscillation appeared as a component of spontaneous epochs when the preparation was bathed in low [Mg] artificial CSF (ACSF) (Silva et al., 1991). Each epoch started with a synchronized spike, and 3-200 cycles of oscillation emerged afterward. Voltage-sensitive dye imaging revealed that the oscillations in the local field potential recordings were actually caused by a propagating population activation. This activation propagated in a relatively uniform size (not expanding). We call this confined, propagating activation a "dynamic ensemble." During each oscillation cycle, one (occasionally two) dynamic ensemble(s) appeared in the slice and was sustained for 60-200 msec. Dynamic ensembles propagated at approximately 30 mm/sec; the activity could propagate in both directions in cortical slices. The propagation consisted in part of "jumps," the locations of which were not fixed. Dynamic ensembles were distinguishable from the epileptiform spikes that occurred in low [Mg] ACSF. Population events similar to dynamic ensembles were also evoked under conditions of unaltered excitability (slice in normal ACSF) by electrical stimulation that activated a low density of neurons in a large area. Our data suggest that self-sustained, spatially confined, and propagating dynamic ensembles might be related to the epoch oscillations in somatosensory cortex seen in vivo (Nicolelis et al., 1995) and thus resemble one form of population activation in the neocortex.
Cortical local circuitry is important in epileptogenesis. Voltage-sensitive dyes and fast imaging were used to visualize the initiation of spontaneous paroxysmal events in adult rat neocortical slices. Although spontaneous paroxysmal events could start from anywhere in the preparation, optical imaging revealed that all spontaneous events started at a few confined initiation foci and propagated to the whole preparation. Multielectrode recording over hundreds of spontaneous events revealed that often two or three initiation foci coexisted in each preparation (n = 10). These foci took turns being dominant; the dominant focus initiated the majority of the spontaneous paroxysmal events during that period. The dominant focus and dynamic rearrangement of foci suggest that the initiation of spontaneous epileptiform events involves a local multineuronal process, perhaps with potentiated synapses.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.