A new lower tungsten divertor has been developed and installed in the EAST superconducting tokamak to replace the previous graphite divertor with power handling capability increasing from <2 MW m−2 to ∼10 MW m−2, aiming at achieving long-pulse H-mode operations in a full metal wall environment with the steady-state divertor heat flux of ∼10 MW m−2. A new divertor concept, ‘corner slot’ (CS) divertor, has been employed. By using the ‘corner effect’, a strongly dissipative divertor with the local buildup of high neutral pressure near the corner can be achieved, so that stable detachment can be maintained across the entire outer target plate with a relatively lower impurity seeding rate, at a separatrix density compatible with advanced steady-state core scenarios. These are essential for achieving efficient current drive with low-hybrid waves, a low core impurity concentration and thus a low loop voltage for fully non-inductive long-pulse operations. Compared with the highly closed small-angle-slot divertor in DIII-D, the new divertor in EAST exhibits the following merits: (1) a much simpler geometry with integral cassette body structure, combining vertical and horizontal target plates, which are more suitable for actively water-cooled W/Cu plasma facing components, facilitating installation precision control for minimizing surface misalignment, achieving high engineering reliability and lowering the capital cost as well; (2) it has much greater flexibility in magnetic configurations, allowing for the position of the outer strike point on either vertical or horizontal target plates to accommodate a relatively wide triangularity range, δ l = 0.4–0.6, thus enabling to explore various advanced scenarios. A water-cooled copper in-vessel coil has been installed under the dome. Five supersonic molecular beam injection systems have been mounted in the divertor to achieve faster and more precise feedback control of the gas injection rate. Furthermore, this new divertor allows for double null divertor operation and slowly sweeping the outer strike point across the horizontal and vertical target plates to spread the heat flux for long-pulse operations. Preliminary experimental results demonstrate the ‘corner effect’ and are in good agreement with simulations using SOLPS-ITER code including drifts. The EAST new divertor provides a test-bed for the closed divertor concept to achieve steady-state detachment operation at high power. Next step, a more closed divertor, ‘sharp-cornered slot’ divertor, building upon the current CS divertor concept, has been proposed as a candidate for the EAST upper divertor upgrade.
All living organisms deploy cell-autonomous defenses to combat infection. In plants and animals, these activities generate large supramolecular complexes that recruit immune proteins for protection. Here, we solve the native structure of a massive antimicrobial complex generated by polymerization of 30,000 human guanylate-binding proteins (GBPs) over the entire surface of virulent bacteria. Construction of this giant nanomachine takes ~1-3 minutes, remains stable for hours, and acts as a cytokine and cell death signaling platform atop the coated bacterium. Cryo-ET of this coatomer revealed thousands of human GBP1 molecules undergo ~260 Angstrom insertion into the bacterial outer membrane, triggering lipopolysaccharide release that activates co-assembled caspase-4. Together, our results provide a quasi-atomic view of how the GBP coatomer mobilizes cytosolic immunity to combat infection in humans.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.