In this paper, we present numerical modelling for the investigation of dynamic responses of a floating offshore wind turbine subject to focused waves. The modelling was carried out using a Computational Fluid Dynamics (CFD) tool. We started with the generation of a focused wave in a numerical wave tank based on a first-order irregular wave theory, then validated the developed numerical method for wave-structure interaction via a study of floating production storage and offloading (FPSO) to focused wave. Subsequently, we investigated the wave-/wind-structure interaction of a fixed semi-submersible platform, a floating semi-submersible platform and a parked National Renewable Energy Laboratory (NREL) 5 MW floating offshore wind turbine. To understand the nonlinear effect, which usually occurs under severe sea states, we carried out a systematic study of the motion responses, hydrodynamic and mooring tension loads of floating offshore wind turbine (FOWT) over a range of wave steepness, and compared the results obtained from two potential flow theory tools with each other, i.e., Électricité de France (EDF) in-house code and NREL Fatigue, Aerodynamics, Structures, and Turbulence (FAST). We found that the nonlinearity of the hydrodynamic loading and motion responses increase with wave steepness, revealed by higher-order frequency response, leading to the appearance of discrepancies among different tools.
The natural surge and pitch frequencies of semisubmersible offshore wind platforms are typically designed to be below the wave frequencies to avoid direct excitation. However, surge or pitch resonance can be excited by the nonlinear low-frequency loads generated by irregular incident waves. Second-order potential-flow models with added Morison drag have been found to underpredict this low-frequency excitation and response. As part of the OC6 project1, the authors performed computational fluid dynamics (CFD) simulations to enable a better understanding of the low-frequency loads and the limitations of lower-fidelity models. The focus of this paper is to set up a computationally cost-effective CFD simulation of a fixed semisubmersible platform to investigate nonlinear difference-frequency loads and establish the corresponding uncertainty in the results. Because of the high computing cost, CFD simulations of irregular waves can be challenging. Instead, simulations were performed with bichromatic waves having a shorter repeat period. A preliminary comparison with quadratic transfer functions from second-order potential-flow theory shows that CFD models consistently predict higher nonlinear wave loads at the difference frequency, likely because of flow separation and viscous drag not accounted for in potential-flow theory.
The unsteady aerodynamics of floating offshore wind turbine rotors is more complex than that of fixed-bottom turbine rotors, due to additional rigid-body motion components enabled by the lack of rigid foundations; it is still unclear if low-fidelity aerodynamic models, such as the blade element momentum theory, provide sufficiently reliable input for floating turbine design requiring load data for a wide range of operating conditions. High-fidelity Navies-Stokes CFD has the potential to improve the understanding of FOWT rotor aerodynamics, and support the improvement of lower-fidelity aerodynamic analysis models. To accomplish these aims, this study uses an in-house compressible Navier-Stokes code and the NREL FAST engineering code to analyze the unsteady flow regime of the NREL 5 MW rotor pitching with amplitude of 4° and frequency of 0.2 Hz, and compares all results to those obtained with a commercial incompressible code and FAST in a previous independent study. The level of agreement of CFD and engineering analyses in each of these two studies is found to be quantitatively similar, but the peak rotor power of the compressible flow analysis is about 20 % higher than that of the incompressible analysis. This is possibly due to compressibility effects, as the instantaneous local Mach number is found to be higher than 0.4. Validation of the compressible flow analysis set-up, using an absolute frame formulation and low-speed preconditioning, is based on the analysis of the steady and yawed flow past the NREL Phase VI rotor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.