Pseudomonas aeruginosa is an opportunistic pathogen capable of group behaviors including swarming motility and biofilm formation. Swarming motility plays an important role in the bacterium's spread to new environments, attachment to surfaces, and biofilm formation. Bacterial biofilm is associated with many persistent infections and increased resistance to antibiotics. In this study, we tested the effect of a 2-alkyl-4(1H)-quinolone (AHQ) signal, the Pseudomonas quinolone signal (PQS) on P. aeruginosa swarming and biofilm formation. Our results show that PQS repressed the swarming motility of P. aeruginosa PAO1. Such repression was independent of its cognate receptor PqsR and was not related to changes in the flagellae, type IV pili or the production of the surface-wetting agent rhamnolipid surfactant. While PQS did not affect twitching motility in PAO1, a pqsR deletion abolished twitching motility, indicating that pqsR is required for twitching motility. Our results also indicate that the enhancement of biofilm formation by PQS is at least partially dependent on the GacAS-Rsm regulatory pathway but does not involve the las or rhl QS systems.
Although metabolic perturbations are sensitive indicators for low-dose toxic effects, the metabolic mechanisms affected by rac-metalaxyl and metalaxyl-M in mammals from a metabolic profiling perspective remain unclear. In this study, the metabolic perturbations and toxic effects of rac-metalaxyl and metalaxyl-M in mice were carefully investigated using integrative nuclear magnetic resonance (NMR) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) based metabolomics. Histopathology, NMR-based untargeted urine profile, multivariate pattern recognition, metabolite identification, pathway analysis, UPLC-MS/MS based targeted serum amino acids, and tryptophan pathway analysis were determined after rac-metalaxyl and metalaxyl-M exposure, individually. Histopathology indicated that metalaxyl-M induced greater hepatocellular inflammatory, necrosis, and vacuolation in mice than rac-metalaxyl at the same exposure dosage. The metabolic perturbations induced by rac-metalaxyl and metalaxyl-M were directly separated using partial least-squares discriminant analysis (PLS-DA). Furthermore, metabolite identification and pathway analysis indicated that rac-metalaxyl mainly induced ten urine metabolite changes and four pathway fluctuations. However, metalaxyl-M induced 19 urine metabolite changes and six pathway fluctuations. Serum amino acids and tryptophan pathway metabolite changes induced by rac-metalaxyl and metalaxyl-M were also different even at the same exposure level. Such results may provide specific insight into the metabolic perturbations and toxic effects of rac-metalaxyl and metalaxyl-M, and contribute to providing available data for health risk assessments of rac-metalaxyl and metalaxyl-M at a metabolomics level.
The chiral separation of etoxazole enantiomers on Lux Cellulose-1, Lux Cellulose-3, Chiralpak IC, and Chiralpak AD chiral columns was carefully investigated by normal-phase high performance liquid chromatography and reverse-phase high performance liquid chromatography (HPLC). Hexane/isopropanol, hexane/n-butanol, methanol/water, and acetonitrile/water were used as mobile phase at a flow rate of 0.8 mL/min. The effects of chiral stationary phase, mobile phase component, mobile phase ratio, and temperature on etoxazole separation were also studied. Etoxazole enantiomers were baseline separated on Lux Cellulose-1, Chiralpak IC, and Chiralpak AD chiral columns, and partially separated on Lux Cellulose-3 chiral column under normal-phase HPLC. However, the complete separation on Lux Cellulose-1, Chiralpak IC, and partial separation on Chiralpak AD were obtained under reverse-phase HPLC. Normal-phase HPLC presented better resolution for etoxazole enantiomers than reverse-phase HPLC. Thermodynamic parameters, including ΔH and ΔS, were also calculated based on column temperature changes from 10 °C to 40 °C, and the maximum resolutions (Rs) were not always acquired at the lowest temperature. Furthermore, the optimized method was successfully applied to determine etoxazole enantiomers in cucumber, cabbage, tomato, and soil. The results of chiral separation efficiency of etoxazole enantiomers under normal-phase and reverse-phase HPLC were compared, and contribute to the comprehensive environmental risk assessment of etoxazole at the enantiomer level.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.