One potential factor contributing to the susceptibility of these cells to premature death arises from the cytotoxic effects of amyloid- (A) peptide deposition at or near sites of neuronal degeneration. Cultured human Franc ¸ois G.
Transient forebrain ischemia produced by four-vessel occlusion (4-VO) triggers the delayed death of CA1 neurons in the hippocampus, resulting in behavioral deficits of spatial learning performance. We demonstrate that CA1 neuronal loss induced by 4-VO (12 min) is preceded by a selective and marked elevation of catalytically active caspase-3 in these neurons, indicative of apoptosis. Virally mediated overexpression of the anti-apoptotic gene X chromosome-linked inhibitor of apoptosis protein (XIAP) prevented both the production of catalytically active caspase-3 and degeneration of CA1 neurons after transient forebrain ischemia. CA1 neurons protected in this manner appeared to function normally, as assessed by immunohistochemical detection of the neuronal activity marker nerve growth factor inducible-A and by spatial learning performance in the Morris water maze. These findings indicate that caspase-3 activation is a key event in ischemic neuronal death and that blockade of this event by XIAP overexpression permits CA1 neurons to survive and operate properly after an ischemic insult.
Tyrosine hydroxylase (TH) is the rate-limiting enzyme in brain catecholamine biosynthesis, and tetrahydrobiopterin is its cofactor. Research has focused on identifying mechanisms of TH activity regulation. TH activity is modulated by the cofactor itself, and is enhanced by several kinases phosphorylating key serines in the TH regulatory domain. Aside from these, the mechanisms that control TH gene transcription and TH mRNA translation are also related with the regulation of TH activity. Parkinson's disease (PD) is characterized by severe loss of dopaminergic neurons and depletion of dopamine in substantia nigra. Reduction of TH expression results in diminished dopamine synthesis and leads to PD; thus TH is essential in the pathogenesy of PD. It has also been shown that dysregulation of TH activity will contribute to PD. For example, α-synuclein represses TH not only by inhibiting phosphorylation at Ser40 of TH, but also by stimulating protein phosphatase 2A activity, which decreases dopamine synthesis and leads to parkinsonism. Based on these studies of TH in PD pathogenesis, a therapeutic strategy aimed to improve striatal TH expression in PD has received wide interest. Evidence shows that using drugs or other treatment methods such as gene replacement therapy to increase nigrostriatal TH expression is an effective therapy for PD. Further investigation of TH regulatory mechanisms will not only provide additional drug targets for PD, but may also help to identify new PD therapeutics.
Clinically, electroacupuncture is proved to be an effective therapy for vascular dementia; however, their mechanisms remain uncertain. The aim of the current study was to investigate the mechanism of electroacupuncture therapy for vascular dementia. One month after a vascular dementia animal model was established by bilateral occlusion of common carotid arteries, electroacupuncture treatment was given at "Baihui" (DU20), "Dazhui" (DU14), and "Shenshu" (BL23). Morris water maze was used to assess the learning and memory ability of rats. Western blot assay was performed to detect the expression of mammalian target of rapamycin (mTOR) and eukaryotic translation initiation factor 4E (eIF4E) in hippocampus of rats. Morris water maze test showed that electroacupuncture improved the learning ability of vascular dementia rats. Western blot assay revealed that the expression level of mTOR and eIF4E in the electroacupuncture group and sham-operated group was higher than that in the vascular dementia group (P < 0.05). In conclusion, the decreasing expression of mTOR and eIF4E plays important roles in the pathogenesis of vascular dementia. Electroacupuncture improves learning and memory ability by up-regulating expression of mTOR and eIF4E in the hippocampus of vascular dementia rats.
Copper (Cu) is a necessary micronutrient at lower concentration, while excessive Cu exposure or Cu homeostasis disorders can lead to toxicity. The mechanism of male reproductive toxicity induced by Cu is still unknown. This study aims to investigate whether autophagy plays an important role in copper-induced spermatogenesis disorder in vivo and vitro. The present study showed that copper sulfate (CuSO 4 ) might significantly promote autophagy level in the testis and mouse-derived spermatogonia cell line GC-1 spg cells. Concurrently, CuSO 4 could induce autophagy via AMPK-mTOR pathway that downregulated p -mTOR/mTOR and subsequently upregulated p -AMPKα/AMPKα as well as p -ULK1/ULK1. In the meanwhile, CuSO 4 treatment could also increase expression levels of the autophagy-related proteins. Then, the role of oxidative stress in CuSO 4 -induced autophagy was investigated. The findings demonstrated that oxidative stress inhibitor (NAC) attenuated CuSO 4 -induced autophagy in vivo and vitro , reversing the activation for AMPK-mTOR pathway. Additionally, the study also investigated how autophagy worked under the spermatogenesis disorder induced by CuSO 4 . Inhibition of autophagy could decrease cell viability, and enhance the ROS accumulation and apoptosis in the GC-1 cells, meanwhile, the spermatogenesis disorder, oxidative stress and histopathological changes were increased in the testis. Furthermore, co-treatment with the apoptosis inhibitor (Z-VAD-FMK) could decrease the spermatogenesis disorder but not influence autophagy. Besides, the crosslink between autophagy and ferroptosis were also measured, the data showed that inhibition of autophagy could suppress CuSO 4 -induced ferroptosis in in vivo and vitro . Altogether, abovementioned results indicated that CuSO 4 induced autophagy via oxidative stress-dependent AMPK-mTOR pathway in the GC-1 cells and testis, and autophagy activation possibly led to the generation of protection mechanism through oxidative damage and apoptosis inhibition, however, autophagy also aggravate CuSO 4 toxicology through promoting ferroptosis. Overall, autophagy plays a positive role for attenuating CuSO 4 -induced testicular damage and spermatogenesis disorder. Our study provides a possible targeted therapy for Cu overload-induced reproduction toxicology.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.