At some point during biosynthesis of the antimalarial artemisinin in glandular trichomes of Artemisia annua, the ⌬11(13) double bond originating in amorpha-4,11-diene is reduced. This is thought to occur in artemisinic aldehyde, but other intermediates have been suggested. In an effort to understand double bond reduction in artemisinin biosynthesis, extracts of A. annua flower buds were investigated and found to contain artemisinic aldehyde ⌬11(13) double bond reductase activity. Through a combination of partial protein purification, mass spectrometry, and expressed sequence tag analysis, a cDNA clone corresponding to the enzyme was isolated. The corresponding gene Dbr2, encoding a member of the enoate reductase family with similarity to plant 12-oxophytodienoate reductases, was found to be highly expressed in glandular trichomes. Recombinant Dbr2 was subsequently characterized and shown to be relatively specific for artemisinic aldehyde and to have some activity on small ␣,-unsaturated carbonyl compounds. Expression in yeast of Dbr2 and genes encoding four other enzymes in the artemisinin pathway resulted in the accumulation of dihydroartemsinic acid. The relevance of Dbr2 to trichome-specific artemisinin biosynthesis is discussed.Since its discovery in the 1970s (1), the sesquiterpene lactone artemisinin (Fig. 1) from Artemisia annua has become a key factor in the drive to control malaria (2-4). Semi-synthetic derivatives of plant-derived artemisinin form the basis for artemisinin-based combination therapies, which are the treatment of choice for most forms of the disease. Given the pharmaceutical importance of artemisinin and its singular plant source, there is considerable interest in maintaining a reliable and low cost supply (5). A more complete knowledge of artemisinin biosynthesis and the genes involved is likely to provide ways of increasing production and lowering cost through crop improvement or microbial engineering (6, 7).As in other members of the Asteraceae, A. annua has 10-celled biseriate glandular trichomes that appear on the surfaces of aerial parts of the plant (8 -10). Along with other isoprenoids, the sesquiterpene lactone artemisinin accumulates to levels of 0.01-2% dry weight (11). Although progress is being made in understanding the biosynthesis of artemisinin, considerable gaps in our knowledge remain (6, 12). The formation of amorpha-4,11-diene by amorpha-4,11-diene synthase is the first committed step in the pathway. This is followed by oxidation at C-12 of amorpha-4,11-diene by the cytochrome P-450, Cyp71av1 to give artemisinic alcohol. These steps are well supported from biochemical studies and by the molecular cloning of genes encoding the relevant enzymes (12-14). The pathway beyond artemisinic alcohol is somewhat less well established (6, 7, 15). However, there is biochemical evidence supporting a route to dihydroartemsinic acid via artemisinic aldehyde and dihydroartemsinic aldehyde (12). This route includes the proposed reduction of the ⌬11(13) double bond of artemisinic aldeh...
Summary Biosynthesis of the sesquiterpene lactone and potent antimalarial drug artemisinin occurs in glandular trichomes of Artemisia annua plants and is subjected to a strict network of developmental and other regulatory cues. The effects of three hormones, jasmonate, gibberellin and cytokinin, were studied at the structural and molecular levels in two different A. annua chemotypes by microscopic analysis of gland development, and by targeted metabolite and transcript profiling. Furthermore, a genome‐wide cDNA‐amplified fragment length polymorphism (AFLP)‐based transcriptome profiling was carried out of jasmonate‐elicited leaves at different developmental stages. Although cytokinin and gibberellin positively affected at least one aspect of gland formation, these two hormones did not stimulate artemisinin biosynthesis. Only jasmonate simultaneously promoted gland formation and coordinated transcriptional activation of biosynthetic gene expression, which ultimately led to increased sesquiterpenoid accumulation with chemotype‐dependent effects on the distinct pathway branches. Transcriptome profiling revealed a trichome‐specific fatty acyl‐ coenzyme A reductase, trichome‐specific fatty acyl‐CoA reductase 1 (TFAR1), the expression of which correlates with trichome development and sesquiterpenoid biosynthesis. TFAR1 is potentially involved in cuticular wax formation during glandular trichome expansion in leaves and flowers of A. annua plants. Analysis of phytohormone‐modulated transcriptional regulons provides clues to dissect the concerted regulation of metabolism and development of plant trichomes.
Recently, we have provided evidence that the polymorphic self-incompatibility (S) locus-encoded F-box (SLF) protein AhSLF-S 2 plays a role in mediating a selective S-RNase destruction during the self-incompatible response in Antirrhinum hispanicum. To investigate its role further, we first transformed a transformation-competent artificial chromosome clone (TAC26) containing both AhSLF-S 2 and AhS 2 -RNase into a self-incompatible (SI) line of Petunia hybrida. Molecular analyses showed that both genes are correctly expressed in pollen and pistil in four independent transgenic lines of petunia. Pollination tests indicated that all four lines became self-compatible because of the specific loss of the pollen function of SI. This alteration was transmitted stably into the T1 progeny. We then transformed AhSLF-S 2 cDNA under the control of a tomato (Lycopersicon esculentum) pollen-specific promoter LAT52 into the self-incompatible petunia line. Molecular studies revealed that AhSLF-S 2 is specifically expressed in pollen of five independent transgenic plants. Pollination tests showed that they also had lost the pollen function of SI. Importantly, expression of endogenous SLF or SLF-like genes was not altered in these transgenic plants. These results phenocopy a well-known phenomenon called competitive interaction whereby the presence of two different pollen S alleles within pollen leads to the breakdown of the pollen function of SI in several solanaceaous species. Furthermore, we demonstrated that AhSLF-S 2 physically interacts with PhS 3 -RNase from the P. hybrida line used for transformation. Together with the recent demonstration of PiSLF as the pollen determinant in P. inflata, these results provide direct evidence that the polymorphic SLF including AhSLF-S 2 controls the pollen function of S-RNase-based self-incompatibility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.