Cryptosporidium spp. are common parasitic pathogens causing diarrhea in humans and various animals. Fur animals are widely farmed in Shandong Province, China, but the prevalence and genetic identity of Cryptosporidium spp. in them are unclear. In this study, 1,211 fecal samples were collected from 602 minks, 310 raccoon dogs and 299 foxes on two farms in Shandong and analyzed for Cryptosporidium spp. by nested PCR and sequence analyses of the small subunit rRNA gene. The overall infection rate of Cryptosporidium spp. was 31.5% (381/1,211), with a higher infection rate in raccoon dogs (37.7%, 117/310) than in foxes (32.4%, 97/299) and minks (27.7%, 167/602). By age, the highest infection rates of Cryptosporidium spp. were observed in raccoon dogs of 1-2 months, minks of 5-6 months, and foxes of > 12 months. Three Cryptosporidium species and genotypes were detected, including C. canis (n = 279), C. meleagridis (n = 65) and Cryptosporidium mink genotype (n = 37). Among the three major host species, raccoon dogs were infected with C. canis only (n = 117), while foxes were infected with both C. canis (n = 32) and C. meleagridis (n = 65), and minks with C. canis (n = 130) and Cryptosporidium mink genotype (n = 37). Subtyping of C. canis by sequence analysis of the 60 kDa glycoprotein gene identified eight subtypes. They belonged to two known subtype families, XXa and XXd, and two novel subtype families XXf and XXg, with host adaptation at the subtype family level. Notably, C. canis from foxes was genetically distant from those in other hosts. Further subtyping analysis identified three subtypes (IIIeA21G2R1, IIIeA19G2R1 and IIIeA17G2R1) of C. meleagridis and two novel subtype families Xf and Xg of the Cryptosporidium mink genotype. The presence of zoonotic C. canis subtypes in raccoon dogs and C. meleagridis subtypes in foxes suggests that these fur animals might be potential reservoirs for human-pathogenic Cryptosporidium spp.
Background Cryptosporidium spp., Giardia duodenalis and Enterocytozoon bieneusi are important zoonotic protists in humans and animals around the world, including nonhuman primates (NHPs). However, the prevalence, genetic identity and zoonotic potential of these pathogens in wild NHPs remain largely unclear. Methods A total of 348 fecal samples were collected from wild NHPs at four locations in Yunnan, southwestern China, and analyzed for these pathogens using nested PCR targeting various genetic loci and DNA sequence analysis of the PCR products. The zoonotic potential of the pathogens was assessed by comparing the genetic identity of the pathogens in these animals with that previously reported in humans. Results Altogether, two (0.6%), 25 (7.2%) and 30 (8.6%) samples were positive for Cryptosporidium sp., G. duodenalis and E. bieneusi, respectively. The Cryptosporidium sp. identified belonged to C. parvum subtype IIdA20G1. Both assemblages A (n = 3) and B (n = 22) were identified among G. duodenalis-positive animals. Five genotypes in zoonotic Group 1 were identified within E. bieneusi, including Type IV (n = 13), D (n = 7), Peru8 (n = 6), MMR86 (n = 2) and HNFS01 (n = 2). All genotypes and subtypes identified are known human pathogens or phylogenetically related to them. Conclusions Data from this study suggest a common occurrence of zoonotic genotypes of G. duodenalis and E. bieneusi in wild NHPs in southwestern China. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.