Soybean cyst nematode (SCN, Heterodera glycines Ichinohe) is a serious soybean pathogen worldwide. HG Type 0 had been a predominant SCN in Heilongjiang province, the largest soybean (Glycine max L.) producing region in China. Recently, increased virulence on resistant cultivars originally developed for resistance to HG Type 0 was observed in fields. In order to identify new cultivars resistant to local SCN populations, two soil samples were collected from two counties (Anda and Wuchang) in which increased virulence on resistant cultivars occurred, and single-cyst cultures from each soil sample were maintained for more than five generations. Two single-cyst cultures from the Anda sample were identified as HG Type 1.2.3.5.6.7 and HG Type 1.3, and one single-cyst culture from Wuchang was identified as HG Type 2.5.7. Then 18 soybean genotypes, including 11 local cultivars originally developed for resistance to HG Type 0, were used to evaluate resistance response to the three identified SCN populations. Various levels of resistance or susceptibility to the three SCN populations were observed among 18 genotypes. Two tests produced similar results for the three SCN populations. Both 'Kangxian12' and 'Kangxian13' showed resistance or moderate resistance to HG Type 2.5.7, HG Type 1.2.3.5.6.7 and HG Type 1.3. The germplasm '09-138' was resistant to HG Type 1.3 and HG Type 1.2.3.5.6.7. Cultivars with 'Peking'-resistance were resistant or moderately resistant to HG Type 2.5.7 in both tests except for 'Kangxian8' in test 1. The identified resistant varieties would be valuable sources of breeding materials for resistance against multiple SCN populations.
Potato virus Y (PVY) is an important plant pathogen infecting solanaceous crops, causing significant losses to global potato and tobacco production. Some aspects of the plant pathology and molecular biology of PVY have been studied intensively, but the evolutionary dynamics of this virus are poorly understood. Here, we performed a comprehensive set of rigorous evolutionary analyses using 177 nucleotide sequences of the viral genome linked protein (VPg) gene, which interacts with the plant eukaryotic translation initiation factor 4E (eIF4E). Our Bayesian analysis reveals that the VPg gene of PVY has been evolving at a rate of 5.60 × 10 –4 subs/site/year (95% credibility interval 3.35 × 10 –4 –8.17 × 10 –4 ), which is equivalent to those of other plant-infecting RNA viruses. We identified different evolutionary constraints on the two clades of PVY, clade N and clade O, whose diverge time were estimated at the year 1861 CE (95% credibility interval 1750–1948 CE). We also found that genetic variations were correlated with geographic regions, suggesting that the evolution of this pathogen is strongly affected by geographical associated factors. Taken together, the results of our study have potential implications for the control strategies of PVY.
Maize is one of the most important crops in the world. Heilongjiang province has the largest maize area in China. Plant-parasitic nematodes are important agricultural pests, which cause huge economic losses every year and have attracted global attention. Potato rot nematode Ditylenchus destructor is a plant-parasitic nematode with a wide range of hosts and strong survival ability in different environments, which brings risks to agricultural production. In 2020, D. destructor was detected in seven maize fields in Heilongjiang province. Morphological identification and molecular approach were used to characterize the isolated D. destructor. The observed morphological and morphometric characteristics were highly similar and consistent with the existing description. The DNA sequencing on the D2/D3 region of the ribosomal DNA 28S and the phylogenetic analysis showed that D. destructor population obtained from maize and other isolates infesting carrot, sweet potato, and potato were in subclade I supported by a 96% bootstrap value. Additionally, the phylogenetic analysis of the ITS rRNA gene sequence further indicated that this D. destructor population from maize clustered in a clade I group and belonged to ITS rRNA haplotype C. An inoculation experiment revealed that D. destructor was pathogenic on the maize seedlings in pots and caused the disease symptoms in the stem base of maize seedlings. This is the first report of D. destructor causing stem rot of maize in Heilongjiang province, and contributes additional information on disease control and safe production of maize in the region.
SummaryRoot-knot nematodes (Meloidogyne spp.) are one of the most economically important groups of plant-parasitic nematodes on potato (Solanum tuberosum), but there has been little study regarding their occurrence on potato in China. In this study, the nematodes in two nematode-infected potato samples collected from Yunnan Province were identified as Meloidogyne spp. Amplicon sizes with species-specific PCR primers indicated that one sample was M. javanica and the other was M. incognita. Cultures established from these two isolates were used to screen 28 potato genotypes in China. All genotypes were susceptible to both M. javanica and M. incognita. However, the mean root galling index and number of egg masses were generally higher for M. javanica than M. incognita. Variable susceptibility was demonstrated among the tested potato genotypes. No available resistant potato cultivars plus a rapid spread of Meloidogyne spp. will result in a potential threat to potato production in China.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.