The lack of a specific marker differentiating early mycosis fungoides (eMF) from benign inflammatory dermatitis presents significant difficulties in the assessment and management of suspected MF patients, which often leads to delayed diagnosis and improper medical approaches. To address this, an investigation was carried out to characterize positive identification markers for eMF by comparing eMF lesions with healthy skin and benign inflammatory dermatitis, using high-throughput genomic transcription profiling. A total of 349 genes were differentially expressed in eMF lesions compared with normal skin. These genes belong to pathways associated with inflammation, immune activation, and apoptosis regulation. Most of them (N=330) also demonstrated significant upregulation in chronic dermatitis, making them nonideal markers for eMF. Among them, 19 genes with specific enrichment in eMF lesions were identified that showed no significant upregulation in chronic dermatitis. Two of them, TOX and PDCD1, showed high discrimination power between eMF lesions and biopsies from benign dermatitis by RNA expression. Furthermore, TOX demonstrated highly specific staining of MF cells in eMF skin biopsies in immunohistochemistry and immunofluorescence, including the early epidermotropic cells in Pautrier's microabscesses. This study demonstrates the potential of eMF-enriched genes, especially TOX, as molecular markers for histological diagnosis of eMF, which currently is a major diagnostic challenge.
Longitudinal cancer monitoring is crucial to clinical implementation of precision medicine. There is growing evidence indicating important functions of extracellular vesicles (EVs) in tumor progression and metastasis, including matrix remodeling via transporting matrix metalloproteases (MMPs). However, the clinical relevance of EVs remains largely undetermined, partially owing to challenges in EV analysis. Distinct from existing technologies mostly focused on characterizing molecular constituents of EVs, here we report a nanoengineered lab-on-a-chip system that enables integrative functional and molecular phenotyping of tumor-associated EVs. A generalized, high-resolution colloidal inkjet printing method was developed to allow robust and scalable manufacturing of three-dimensional (3D) nanopatterned devices. With this nanochip platform, we demonstrated integrative analysis of the expression and proteolytic activity of MMP14 on EVs to detect in vitro cell invasiveness and monitor in vivo tumor metastasis, using cancer cell lines and mouse models. Analysis of clinical plasma specimen showed that our technology could be used for cancer detection including accurate classification of age-matched controls and patients with ductal carcinoma in situ, invasive ductal carcinoma, or locally metastatic breast cancer in a training cohort (n = 30, 96.7% accuracy) and an independent validation cohort (n = 70, 92.9% accuracy). With clinical validation, our technology could provide a useful liquid biopsy tool to improve cancer diagnostics and real-time surveillance of tumor evolution in patients to inform personalized therapy.
This study identified three novel coding variants and four new susceptibility gene regions for SLE. The results provide insights into the biological mechanism of SLE.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.