This paper is presents a microstrap patch with a T-shaped rectangular antenna workings; the T-shaped patch operating at 3.6 GHz resonating frequency range for 5G application (from 2.9 to 4.4 GHz) repectively. The overall size of the proposed antenna is 22×24×0.25 mm3; the feeding technique using a 50 Ω feed line to the antenna. The proposed antenna is printed on compact Rogers RT 588 lz substrate having permittivity (ɛr) 2.00, loss tangent (tan δ) 0.0021, with thikness 0.2 mm. The proposed antenna introducesmany advantages like small size, low profile, and simpler structure. The characteristics such as radiation pattern, reflection coefficient, gain, current distribution, and radiation efficiency are respectively presented and discussed, using CST microwave study in simulating and analysing. Introducing a slot with a rectangular T-shaped patch antenna achieved lower frequency with 98.474% radiation efficiency and peak gain of the proposed antenna at 2.52 dB. The fractional bandwidth is 42.81% (2.90 GHz to 4.48 GHz) with a resonant frequency of 3.6 GHz and return loss at 28.76 dB. This frequency band attributessuited 5 G mobile application.
After a major disaster, the present communication system fails in providing the services in the affected area. No means of communication proves to be more dangerous as the rescue and relief operations become more difficult. Our current research is about establishing a network in such a disaster-prone area, which would facilitate to communicate and carry out the rescue missions. This research project used Java to create a fire-chat application and used it with the smartphone android system. It used Bluetooth model HC-05 linked with Arduino UNO by the SPI interface to connect Arduino with the smartphone. The FR-model HCW69 connected with Arduino by using UART to transceiver the message. The microstrip antenna 915 MHz connected with the FR-model HCW69 to give us more distance. The maximum effective range of the transceiver was 1 kilometer, to communicate by forming a mesh network. This application is helpful in the case when the smartphone is out of service; it (smartphone) can be communicated connected to the other nearby users with a message.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.