The role of cerebellum in coordination of somatic motor activity has been studied in detailed in various species. However, experimental and clinical studies have shown the involvement of the cerebellum with various visceral and cognitive functions via its vast connections with the central nervous system. The present study aims to define the cortical and subcortical and brain stem connections of the cerebellum via the superior (SCP) and middle (MCP) cerebellar peduncle using biotinylated dextran amine (BDA) and Fluoro-Gold (FG) tracer in Wistar albino rats. 14 male albino rats received 20-50-nl pressure injections of either FG or BDA tracer into the SCP and MCP. Following 7-10 days of survival period, the animals were processed according to the related protocol for two tracers. Labelled cells and axons were documented using light and fluorescence microscope. The SCP connects cerebellum to the insular and infralimbic cortices whereas, MCP addition to the insular cortex, it also connects cerebellum to the rhinal, primary sensory, piriform and auditory cortices. Both SCP and MCP connected the cerebellum to the ventral, lateral, posterior and central, thalamic nuclei. Additionally, SCP also connects parafasicular thalamic nucleus to the cerebellum. The SCP connects cerebellum to basal ganglia (ventral pallidum and clastrum) and limbic structures (amygdaloidal nuclei and bed nucleus of stria terminalis), however, the MCP have no connections with basal ganglia or limbic structures. Both the SCP and MCP densely connects cerebellum to various brainstem structures. Attaining the knowledge of the connections of the SCP and MCP is important for the diagnosis of lesions in the MCP and SCP and would deepen current understanding of the neuronal circuit of various diseases or lesions involving the SCP and MCP.
The subthalamic nucleus (STN) is important for normal movement as well as in movement disorders. The STN is a target nuclei in patients with advanced Parkinson's disease (PD). Deep brain stimulation (DBS) is a standard surgical treatment for PD. Although DBS results in a significant reduction in motor disability, several negative side effects have been reported. Thus, to understand the side effects of DBS the connection of the STN should be well known. Therefore, the present study aims to reexamine the STN with an emphasis on poorly-or undocumented connections. Furthermore, the bilateral and interhemispheric connections of the STN are evaluated. Fifteen male albino rats received injections of Fluoro-Gold retrograde and biotinylated dextran amine anterograde tracers into the STN. Following a 7-10 day survival period, the animals were processed according to the relevant protocol for each tracer. The present study demonstrates ipsilateral connections of the STN with cortical regions (i.e., infralimbic, cingulate, frontal, piriform, primary motor, primary sensory, insular and retrosplenial cortices), the endopiriform nucleus, basal ganglia related structures (i.e., caudate putamen, globus pallidus, ventral pallidum, nucleus accumbens, claustrum and substantia innominata) and the deep cerebellar nuclei (i.e., lateral, anterior interposed). Bilateral connections of the STN were observed with limbic (amygdala, bed nucleus of stria terminalis), hypothalamic (ventromedial, posterior, anterior, lateral and mammillary) thalamic (thalamic reticular nucleus), epithalamic (habenular nucleus), and brainstem structures (superior colliculus, substantia nigra, spinal nucleus of the trigeminal nerve, red nucleus, dorsal raphe nucleus, pedunculopontine tegmental nuclei). Interhemispheric connections between left and right STN were also observed. The present study fills important gaps in connectivity of the STN. In particular, we report STN connectivity with cortical areas (i.e., piriform, endopiriform and insular), claustrum, hypothalamic, thalamic reticular, cerebellar, habenular, trigeminal, red, cuneate and gracile nuclei and substantia innominate. These connections, which have not been previously described or poorly described, provide new routes that can alter the conceptual architecture of the basal ganglia circuitry and may modify our view of the functional identity of the STN.
The connections between the cerebellum and the hypothalamus have been well documented. However, the specific cerebellar peduncle through which the hypothalamo-cerebellar and cerebello-hypothalamic connections pass has not been demonstrated. The present study aims to define the specific cerebellar peduncle through which connects the cerebellum to specific hypothalamic nuclei. Seventeen male albino rats received 20-50-nl pressure injections of either Fluoro-Gold (FG) or biotinylated dextran amine (BDA) tracer into the superior (SCP), middle (MCP), and inferior (ICP) cerebellar peduncle. Following 7-10 days of survival period, the animals were processed according to the appropriate protocol for the two tracers used. Labeled cells and axons were documented using light or fluorescence microscopy. The present study showed connections between the hypothalamus and the cerebellum via both the SCP and the MCP but not the ICP. The hypothalamo-cerebellar connections via the SCP were from the lateral, dorsomedial, paraventricular, and posterior hypothalamic nuclei, and cerebello-hypothalamic connections were to the preoptic and lateral hypothalamic nuclei. The hypothalamo-cerebellar connections via the MCP were from the lateral, dorsomedial, ventromedial, and mammillary hypothalamic nuclei; and cerebello-hypothalamic connections were to the posterior, arcuate, and ventromedial hypothalamic nuclei. The hypothlamo-cerebellar connections were denser compared to the cerebello-hypothlamic connections via both the SCP and the MCP. The connection between the cerebellum and the hypothalamus was more prominent via the SCP than MCP. Both the hypothlamo-cerebellar and cerebello-hypothalamic connections were bilateral, with ipsilateral preponderance. Reciprocal connections were with the lateral hypothalamic nucleus via the SCP and the ventromedial nucleus via the MCP were observed. Cerebellum takes part in the higher order brain functions via its extensive connections. The knowledge of hypothalamo-cerebellar and cerebello-hypothalamic connections conveyed within the SCP and MCP can be important for the lesions involving the MCP and SCP. These connections can also change the conceptual architecture of the cerebellar circuitry and deepen current understanding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.