Coronaviruses silently circulate in human and animal populations, causing mild to severe diseases. Therefore, livestock are important components of a "One Health" perspective aimed to control these viral infections. However, at present there is no example that considers pig genetic resources in this context. In this study, we investigated the variability of four genes (ACE2, ANPEP and DPP4 encoding for host receptors of the viral spike proteins and TMPRSS2 encoding for a host proteinase) in 23 European (19 autochthonous and three commercial breeds and one wild boar population) and two Asian Sus scrofa populations. A total of 2229 variants were identi ed in the four candidate genes: 26% of them were not previously described; 29 variants affected the protein sequence and might potentially interact with the infection mechanisms. The results coming from this work are a rst step towards a "One Health" perspective that should consider conservation programmes of pig genetic resources with twofold objectives: i) genetic resources could be reservoirs of host gene variability useful to design selection programmes to increase resistance to coronaviruses; ii) the described variability in genes involved in coronavirus infections across many different pig populations might be part of a risk assessment including pig genetic resources.
Despite decades of exhaustive research on cancer, questions about cancer initiation, development, recurrence, and metastasis have still not been completely answered. One of the reasons is the plethora of factors acting simultaneously in a tumour microenvironment, of which not all have garnered attention. One such factor that has long remained understudied and has only recently received due attention is the host microbiota. Our sheer-sized microbiota exists in a state of symbiosis with the body and exerts significant impact on our body’s physiology, ranging from immune-system development and regulation to neurological and cognitive development. The presence of our microbiota is integral to our development, but a change in its composition (microbiota dysbiosis) can often lead to adverse effects, increasing the propensity of serious diseases like cancers. In the present review, we discuss environmental and genetic factors that cause changes in microbiota composition, disposing of the host towards cancer, and the molecular mechanisms (such as β-catenin signalling) and biochemical pathways (like the generation of oncogenic metabolites like N-nitrosamines and hydrogen sulphide) that the microbiota uses to initiate or accelerate cancers, with emphasis on gastrointestinal cancers. Moreover, we discuss how microbiota can adversely influence the success of colorectal-cancer chemotherapy, and its role in tumour metastasis. We also attempted to resolve conflicting results obtained for the butyrate effect on tumour suppression in the colon, often referred to as the ‘butyrate paradox’. In addition, we suggest the development of microbiota-based biomarkers for early cancer diagnosis, and a few target molecules of which the inhibition can increase the overall chances of cancer cure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.