The novel coronavirus disease (COVID-19) has been rapidly spreading, causing a severe health crisis all around the world, including Indonesia. As expected, due to Indonesia’s diverse topography and population, there are variations in the number of cases amongst its provinces. Therefore clustering is needed to develop a map of COVID-19 cases to enable optimal handling of this pandemic. The provinces are clustered using K-means method according to their respective COVID-19 case numbers. Data taken from Indonesian Ministry of Health in November 2020 is used in this study, covering COVID-19 cases in Indonesia’s 34 provinces. K-means results in seven optimal clusters with variance ratio of 0.185. Clusters 1 to 3 cover most provinces in Java, including DKI Jakarta in Cluster 1 as the province with the most cases. Each of Clusters 4 and 5 consists of 5 provinces, while each of Clusters 6 and 7 consists of 10 provinces. Cluster 7 comprises provinces with lowest cases of COVID-19.
Ikan merupakan salah satu produk pangan hewani yang memiliki kontribusi cukup besar terhadap konsumsi protein penduduk di Indonesia. Dari tahun ke tahun tingkat konsumsi ikan terus meningkat; namun ironisnya, tingkat konsumsi ikan di Indonesia masih tergolong rendah. Selain itu, data menunjukkan bahwa persebaran konsumsi ikan nasional per pulau selama ini tidak merata. Tingginya disparitas tingkat konsumsi ikan di Jawa atau Kawasan Barat Indonesia dengan Kawasan Timur Indonesia menyebabkan tingkat konsumsi ikan nasional relatif rendah. Salah satu cara yang dapat digunakan untuk memantau tingkat kecukupan konsumsi ikan dengan mudah adalah dengan mengelompokkannya di seluruh Indonesia. Dengan adanya klasterisasi kemudian pemetaan, perencanaan, monitoring dan evaluasi, serta sistem peringatan dini masalah kelangkaan konsumsi dapat dilakukan dengan baik. Kajian ini dilakukan dengan tujuan untuk menilai tingkat konsumsi ikan di Indonesia dengan cara mengelompokkan dan memetakannya; sehingga dapat dirumuskan rekomendasi kebijakan peningkatan konsumsi ikan penduduk Indonesia secara akurat. Data yang digunakan dalam penelitian ini adalah data sekunder SUSENAS 2019 yang diselenggarakan oleh Badan Pusat Statistik. Variabel yang digunakan dalam penelitian ini adalah tingkat konsumsi ikan, tingkat partisipasi, dan tingkat pengeluaran untuk ikan. Pengelompokan dilakukan berdasarkan metode cluster K-means. Hasil analisis menunjukkan bahwa jumlah cluster yang optimal dengan rasio variance terkecil adalah 5 cluster. Klaster 1 dengan tingkat konsumsi, partisipasi dan pengeluaran ikan terendah adalah provinsi Daerah Istimewa Yogyakarta dan Jawa Tengah. Klaster 2 terdiri dari 5 provinsi yaitu Lampung, Jawa Barat, Jawa Timur, Bali, Nusa Tenggara Timur. Klaster 3 terdiri dari 8 provinsi, yaitu Sumatera Barat, Sumatera Selatan, Bengkulu, Banten, Nusa Tenggara Barat, Sulawesi Tengah, Gorontalo, dan Sulawesi Barat. Klaster 4 terdiri dari 11 provinsi yaitu Sumatera Utara, Jambi, DKI Jakarta, Kalimantan Barat, Kalimantan Selatan, Sulawesi Utara, Sulawesi Tenggara, Maluku, Maluku Utara dan Papua. Sedangkan cluster 5 dengan tingkat konsumsi, partisipasi, dan pengeluaran ikan tertinggi terdiri dari 8 provinsi, yaitu Aceh, Riau, Kepulauan Bangka Belitung, Kepulauan Riau, Kalimantan Tengah, Kalimantan Timur, Kalimantan Utara, dan Papua Barat
COVID-19 is an infectious disease caused by a type of coronavirus that was only discovered in December 2019. Patients with underlying medical conditions, or comorbidities, have a higher risk of developing severe illness due to COVID-19. The purpose of this study is to classify and analyze the factors which mostly affect the death in COVID-19 patients using QUEST algorithm. The main strengths of QUEST algorithm are unbiased selection of variables and high computational speed. Data used in this study are primary data of 14 variables on 460 COVID-19 patients taken from Dr. M. Goenawan Partowidigdo Lung Hospital in Cisarua, West Java, from March 2020 to January 2021. Results show that there are three significant factors that affected the death in COVID-19 patients. The first factor is the status of COVID-19 patients. The second and third factors are comorbidities, i.e. hypertension and kidney failure, respectively. The factor which mostly affected the death in COVID-19 patients is patient with probable status, with a mortality rate of 95%. The second most factor affecting the death in COVID-19 is patients with under-surveillance, suspected and confirmed status with kidney failure, where the mortality rate is 60%. The accuracy of the classification tree is 80.6%, which is quite optimal.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.