Background and Purpose-Angiotensin II, through stimulation of AT 1 receptors, not only controls blood pressure but also modulates cerebrovascular flow. We sought to determine whether selective AT 1 antagonists could be therapeutically advantageous in brain ischemia during chronic hypertension. Methods-We pretreated spontaneously hypertensive rats (SHR) and normotensive Wistar-Kyoto controls with the AT 1 antagonist candesartan (CV-11974), 0.5 mg/kg per day, for 3 to 14 days, via subcutaneously implanted osmotic minipumps. We analyzed cerebral blood flow by laser-Doppler flowmetry, cerebral stroke in SHR after occlusion of the middle cerebral artery with reperfusion, and brain AT 1 receptors by quantitative autoradiography. Results-Candesartan treatment normalized blood pressure and the shift toward higher blood pressures at both the upper and lower limits of cerebrovascular autoregulation in SHR. Candesartan pretreatment of SHR for 14 days partially prevented the decrease in blood flow in the marginal zone of ischemia and significantly reduced the volume of total and cortical infarcts after either 1 or 2 hours of middle cerebral artery occlusion with reperfusion, relative to untreated SHR, respectively. This treatment also significantly reduced brain edema after 2 hours of middle cerebral artery occlusion with reperfusion. In SHR, candesartan markedly decreased AT 1 binding in areas inside (nucleus of the solitary tract) and outside (area postrema) the blood-brain barrier and in the middle cerebral artery.
Conclusions-Pretreatment
Spinal injuries sustained while snowboarding are increasing considerably in incidence and are characterized as complex injuries. We must educate young snowboarders of the risk of this sport, to prevent these serious injuries.
Etoposide (VP-16) a topoisomerase II inhibitor induces apoptosis of tumor cells. The present study was designed to elucidate the mechanisms of etoposide-induced apoptosis in C6 glioma cells. Etoposide induced increased formation of ceramide from sphingomyelin and release of mitochondrial cytochrome c followed by activation of caspase-9 and caspase-3, but not caspase-1. In addition, exposure of cells to etoposide resulted in decreased expression of Bcl-2 with reciprocal increase in Bax protein. z-VAD.FMK, a broad spectrum caspase inhibitor, failed to suppress the etoposide-induced ceramide formation and change of the Bax/Bcl-2 ratio, although it did inhibit etoposide-induced death of C6 cells. Reduced glutathione or N-acetylcysteine, which could reduce ceramide formation by inhibiting sphingomyelinase activity, prevented C6 cells from etoposide-induced apoptosis through blockage of caspase-3 activation and change of the Bax/Bcl-2 ratio. In contrast, the increase in ceramide level by an inhibitor of ceramide glucosyltransferase-1, D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol caused elevation of the Bax/Bcl-2 ratio and potentiation of caspase-3 activation, thereby resulting in enhancement of etoposide-induced apoptosis. Furthermore, cell-permeable exogenous ceramides (C2- and C6-ceramide) induced downregulation of Bcl-2, leading to an increase in the Bax/Bcl-2 ratio and subsequent activation of caspases-9 and -3. Taken together, these results suggest that ceramide may function as a mediator of etoposide-induced apoptosis of C6 glioma cells, which induces increase in the Bax/Bcl-2 ratio followed by release of cytochrome c leading to caspases-9 and -3 activation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.