The relationship between gastrointestinal conditions and halitosis is discussed. Few reports have suggested that gastrointestinal diseases may cause halitosis. H. pylori infection, which causes gastric ulcers, is considered as a possible cause for halitosis. Intensity of malodour of mouth air was found to be higher in H. pylori-positive patients than in negative patients. The levels of hydrogen sulphide and dimethyl sulphide in mouth air were also significantly higher in the positive patients than in the negative patients (P<0.05). When odour strength in exhaled breath was compared between the two groups, no significant difference was found. Hence, H. pylori infection might not cause a systemic condition producing breath odour. Although there were no significant differences in periodontal parameters or tongue coating between the positive and negative groups, H. pylori may be a frequent contributor to the production of malodour even though its role had not been suspected before. Further study would be necessary to clarify the reason for the increase of volatile sulphur compounds (VSCs) level in H. pylori infection.
Identifying the host genetic factors underlying severe COVID-19 is an emerging challenge1–5. Here we conducted a genome-wide association study (GWAS) involving 2,393 cases of COVID-19 in a cohort of Japanese individuals collected during the initial waves of the pandemic, with 3,289 unaffected controls. We identified a variant on chromosome 5 at 5q35 (rs60200309-A), close to the dedicator of cytokinesis 2 gene (DOCK2), which was associated with severe COVID-19 in patients less than 65 years of age. This risk allele was prevalent in East Asian individuals but rare in Europeans, highlighting the value of genome-wide association studies in non-European populations. RNA-sequencing analysis of 473 bulk peripheral blood samples identified decreased expression of DOCK2 associated with the risk allele in these younger patients. DOCK2 expression was suppressed in patients with severe cases of COVID-19. Single-cell RNA-sequencing analysis (n = 61 individuals) identified cell-type-specific downregulation of DOCK2 and a COVID-19-specific decreasing effect of the risk allele on DOCK2 expression in non-classical monocytes. Immunohistochemistry of lung specimens from patients with severe COVID-19 pneumonia showed suppressed DOCK2 expression. Moreover, inhibition of DOCK2 function with CPYPP increased the severity of pneumonia in a Syrian hamster model of SARS-CoV-2 infection, characterized by weight loss, lung oedema, enhanced viral loads, impaired macrophage recruitment and dysregulated type I interferon responses. We conclude that DOCK2 has an important role in the host immune response to SARS-CoV-2 infection and the development of severe COVID-19, and could be further explored as a potential biomarker and/or therapeutic target.
A 41-year-old woman, who underwent breast resection for cancer of the right breast and adjuvant chemotherapy 2 years ago, was admitted to our hospital due to shortness of breath upon exertion. High-resolution computed tomography of the chest showed small nodular opacities in the peribronchiolar area in both lungs, as well as mediastinal and hilar lymphadenopathy. A transbronchial lung biopsy revealed breast cancer metastasis and pulmonary tumor thrombotic microangiopathy (PTTM). Treatment of PTTM is rarely reported due to the difficulty of antemortem diagnosis; however, the patient was effectively treated with chemotherapy and oxygen and anticoagulation therapies for 3 months.
In our cohort of CTD-ILD, two courses of pulse dose methylprednisolone therapy followed by prednisone and oral tacrolimus appeared to be well tolerated, and to have multidimensional efficacy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.