In this work, a novel design for the electrodes in a near quasi-single-mode (QSM) vertical-cavity surface-emitting laser (VCSEL) array with Zn-diffusion apertures inside is demonstrated to produce an effective improvement in the high-speed data transmission performance. By separating the electrodes in a compact 2×2 coupled VCSEL array into two parts, one for pure dc current injection and the other for large ac signal modulation, a significant enhancement in the high-speed data transmission performance can be observed. Compared with the single electrode reference, which parallels 4 VCSEL units in the array, the demonstrated array with its separated electrode design exhibits greater dampening of electrical-optical (E-O) frequency response and a larger 3-dB E-O bandwidth (19 vs. 15 GHz) under the same amount of total bias current (20 mA). Moreover, this significant improvement in dynamic performance does not come at the cost of any degradation in the static performance in terms of the maximum near QSM optical output power (17 mW @ 20 mA) and the Gaussian-like optical far-field pattern which has a narrow divergence angle (full-width half maximum (FWHM): 10° at 20 mA). The advantages of the separated electrode design lead to a much better quality of 32 Gbit/sec eye-opening as compared to that of the reference device (jitter: 1.5 vs. 2.8 ps) and error-free 32 Gbit/sec transmissions over a 500 m multi-mode fiber has been achieved under a moderate total bias current of 20 mA.
850nm VCSEL arrays (7x7) using Zn-diffusion/Oxide-relief apertures have been demonstrated. It exhibits high CW power (190 mW), dampening E-O frequency response, and wide 3-dB E-O bandwidths (13 GHz). 25Gbit/sec error-free transmission has been demonstrated.
The development of high-speed and high-brightness vertical-cavity surface-emitting lasers (VCSELs), which can serve as an efficient light source for optical wireless communication (OWC), play a crucial role in growth of the next generation of wireless communication networks, e.g., 6 G and satellite communications. In this work, by optimizing the size of the Zn-diffusion and oxide-relief apertures in a high-speed 850 nm VCSEL, we obtain record-high brightness (2.9 MWcm sr at 10 mW output) with single polarized and (quasi-) single-mode (SM) outputs under continuous wave (CW) operation. However, such high brightness output comes at the cost of spatial hole burning (SHB) effect and degraded quality of 25 Gbit/sec eye patterns. In addition, an SM VSCEL array structure is usually needed to further boost the total available optical power for long-reach OWC. Here, a novel (quasi-) SM VCSEL array structure is demonstrated which releases the trade-off between the performances of brightness and eye-pattern quality.Our demonstrated array has a special crisscross mesa connecting neighboring VCSEL units and an extra electroplated copper substrate integrated on the backside of the chip. Compared to the reference array without the copper substrate and connected active mesas, the demonstrated array exhibits a higher (quasi-) SM output power, narrower divergence angle, larger orthogonal polarization mode suppression ratio (OPSR), and flatter E-O response. This in turn leads to smaller jitter and less noise in the measured 12.5 Gbit/sec eye-patterns. The demonstrated 7x7 array exhibits a maximum SM power of around 90 mW with a 1/e 2 divergence angle as narrow as 7 o (FWHM: 5 o ), single polarized output (10 dB OPSR), decent relative intensity noise performance (< -130 dB/Hz) and clear 12.5 Gbit/sec eye-opening. Such new device with remarkable static/dynamic performances has strong potential to further improve the product of the linking distance and data rate in the next generation of OWC channels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.