Decentralized Online Learning (online learning in decentralized networks) attracts more and more attention, since it is believed that Decentralized Online Learning can help the data providers cooperatively better solve their online problems without sharing their private data to a third party or other providers. Typically, the cooperation is achieved by letting the data providers exchange their models between neighbors, e.g., recommendation model. However, the best regret bound for a decentralized online learning algorithm is O n √ T , where n is the number of nodes (or users) and T is the number of iterations. This is clearly insignificant since this bound can be achieved without any communication in the networks. This reminds us to ask a fundamental question: Can people really get benefit from the decentralized online learning by exchanging information? In this paper, we studied when and why the communication can help the decentralized online learning to reduce the regret. Specifically, each loss function is characterized by two components: the adversarial component and the stochastic component. Under this characterization, we show that decentralized online gradient (DOG) enjoys a regret bound O √ n 2 T G 2 + nT σ 2 , where G measures the magnitude of the adversarial component in the private data (or equivalently the local loss function) and σ measures the randomness within the private data. This regret suggests that people can get benefits from the randomness in the private data by exchanging private information. Another important contribution of this paper is to consider the dynamic regret -a more practical regret to track users' interest dynamics. Empirical studies are also conducted to validate our analysis.
Recently, network lasso has drawn many attentions due to its remarkable performance on simultaneous clustering and optimization. However, it usually suffers from the imperfect data (noise, missing values etc), and yields sub-optimal solutions. The reason is that it finds the similar instances according to their features directly, which is usually impacted by the imperfect data, and thus returns sub-optimal results. In this paper, we propose triangle lasso to avoid its disadvantage for graph datasets. In a graph dataset, each instance is represented by a vertex. If two instances have many common adjacent vertices, they tend to become similar. Although some instances are profiled by the imperfect data, it is still able to find the similar counterparts. Furthermore, we develop an efficient algorithm based on Alternating Direction Method of Multipliers (ADMM) to obtain a moderately accurate solution. In addition, we present a dual method to obtain the accurate solution with the low additional time consumption. We demonstrate through extensive numerical experiments that triangle lasso is robust to the imperfect data. It usually yields a better performance than the state-of-the-art method when performing data analysis tasks in practical scenarios.
Multi-view spectral clustering aims to group data into different categories by optimally exploring complementary information from multiple Laplacian matrices. However, existing methods usually linearly combine a group of pre-specified first-order Laplacian matrices to construct an optimal Laplacian matrix, which may result in limited representation capability and insufficient information exploitation. In this paper, we propose a novel optimal neighborhood multi-view spectral clustering (ONMSC) algorithm to address these issues. Specifically, the proposed algorithm generates an optimal Laplacian matrix by searching the neighborhood of both the linear combination of the first-order and high-order base Laplacian matrices simultaneously. This design enhances the representative capacity of the optimal Laplacian and better utilizes the hidden high-order connection information, leading to improved clustering performance. An efficient algorithm with proved convergence is designed to solve the resultant optimization problem. Extensive experimental results on 9 datasets demonstrate the superiority of our algorithm against state-of-the-art methods, which verifies the effectiveness and advantages of the proposed ONMSC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.